A Review of Recent Results of the ζ-Function Regularization Procedure in Curved Spacetime

  • V. Moretti
Conference paper


Some recent (1997–1998) theoretical results concerning the ζ-function regularization procedure used to renormalize, at one-loop, the effective Lagrangian, field fluctuations and the stress-tensor are reviewed along with some applications.


Green Function Lorentzian Manifold Regularization Procedure Function Regularization Local Zeta Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fulling S.A., Ruijsenaars S.N.M. (1987): Phys. Rep. 152, 135MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    Kay B.S., Wald R.M. (1991): Phys. Rep. 207, 49MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    Moretti V. (1999): Local £-function techniques vs point-splitting procedures: a few rigorous results. Commun. Math. Phys. 201, 327MathSciNetADSMATHCrossRefGoogle Scholar
  4. 4.
    Hawking S.W. (1977): Commun. Math. Phys. 55, 133MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    Wald R.M. (1979): Commun. Math. Phys. 70, 226MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Moretti V. (1999): One-loop stress-tensor renormalization in curved background: the relation between £-function and point-splitting approaches, and an improved point-splitting procedure. J. Math. Phys. 40, 3843MathSciNetADSMATHCrossRefGoogle Scholar
  7. 7.
    Birrel N.D., Davies P.C.W. (1982): Quantum Fields in Curved Space. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  8. 8.
    Fulling S.A. (1991 ): Aspects of Quantum Field Theory in Curved Space-Time. Cambridge University Press, CambridgeGoogle Scholar
  9. 9.
    Wald R.M. (1994): Quantum Field theory and Black Hole Thermodynamics in Curved Spacetime. The University of Chicago Press, ChicagoMATHGoogle Scholar
  10. 10.
    Moretti V. (1997): Phys. Rev. D 56, 7797MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    Iellici D., Moretti V. (1998): Phys. Lett. B 425, 33MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    Caldarelli M. (1999): Nucl. Phys. B 549, 499–515MathSciNetADSMATHCrossRefGoogle Scholar
  13. 13.
    Radu E. (1998): Phys. Lett. A 247, 207MathSciNetADSMATHCrossRefGoogle Scholar
  14. 14.
    Binosi D., Moretti V., Vanzo L., Zerbini S. (1999): Quantum scalar field on the massless (2 + l)-dimensional black-hole background, gr-qc/9809041, Phys. Rev. D 59, 104017MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2000

Authors and Affiliations

  • V. Moretti

There are no affiliations available

Personalised recommendations