Problems in Quantum General Relativity and Gravitation

  • E. Sorace
Conference paper


From the early sixties a long-term scientific wave was initiated in the communities of the physical and mathematical disciplines. It was described very well by the title of the survey book (1993) prepared for the 65th birthday of D. Sciama: “The Renaissance of General Relativity and Cosmology” [1]. Six years later one can see that in this area experimental and theoretical issues are still growing in quantity and quality and cross-fertilizing in a measure conceivable only in a very fortunate period of the evolution of a science.


Black Hole Noncommutative Geometry Spin Network Spin Foam Black Hole Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ellis G., Lanza A., Miller J., eds. (1993): Renaissance of General Relativity and Cosmology. Cambridge University Press, CambridgeMATHGoogle Scholar
  2. 2.
    Rovelli C. (1997): Strings, loops and others: a critical survey of the present approaches to quantum gravity. Plenary lecture on quantum gravity at the G A’15 conference, Poona, India, gr-qc/9803024Google Scholar
  3. 3.
    Einstein A. (1916): Näherungsweise Integration der Feldgleichungen der Gravitation. König. Preuss. Akad. der Wiss. Berlin. Sitzungberichte, 688–696. Quoted by Cattani C, De Maria M. (1993): Conservation Laws and Gravitational Waves, in The Attraction of Gravitation, ed. by J. Earman, M. Janssen, J.D. Norton, Birkhäuser, BostonGoogle Scholar
  4. 4.
    Bekenstein J.D. (1974): Generalized second law of thermodynamics in black hole physics. Phys. Rev. D 9, 3292; Hawking S.W. (1974): Do black holes explode? Nature 248, 30ADSCrossRefGoogle Scholar
  5. 5.
    Hawking S.W. (1975): Particle creation by black holes. Commun. Math. Phys. 43, 199–220MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Hartle J.B., Hawking S.W. (1976): Path-integral derivation of black-hole radiance. Phys. Rev. D 13, 2188–2203ADSCrossRefGoogle Scholar
  7. 7.
    Moss I.G. (1996): Quantum Theory, Black Holes and Inflation. John Wiley, ChichesterMATHGoogle Scholar
  8. 8.
    Penrose R. (1969): Gravitational collapse: the role of general relativity. Riv. del Nuovo Cimento 1, 252–276ADSGoogle Scholar
  9. 9.
    Amelino-Camelia G., Ellis J., Mavromatos N.E., Nanopoulos D.V., Sarkar S. (1998): Tests of quantum gravity from observation of γ-ray bursts. Nature 393, 763–765ADSCrossRefGoogle Scholar
  10. 10.
    Kosiński P., Lukierski J., Maślanka P. (1999): Local D = 4 field theory on k-deformed Minkowski space, hep-th/9902037Google Scholar
  11. 11.
    Gambini R., Pullin J. (1999): Nonstandard optics from quantum space-time. Phys. Rev. D59, 124021-1-4Google Scholar
  12. 12.
    Ashtekar A. (1988): New Perspectives in Canonical Gravity. Bibliopolis, NaplesMATHGoogle Scholar
  13. 13.
    Asthekar A. (1997): Polymer Geometry at Planck Scale and Quantum Einstein Equations, in Proc. of the 14th International Conference on General Relativity and Gravitation, ed. by M. Francaviglia, G. Longhi, L. Lusanna, E. Sorace, World Scientific, Singapore, pp. 8–29; Gambini R., Pullin J. (1996): Loops, Knots, Gauge Theories and Quantum Gravity. Cambridge University Press, CambridgeGoogle Scholar
  14. 14.
    Penrose R. (1971): Angular Momentum: an Approach to Combinatorial Space-Time, in Quantum theory and beyond, ed. by T. Bastin, University Press, Cambridge, pp. 151–180Google Scholar
  15. 15.
    Baez J.C. (1999): An introduction to spin foam models of BF theory and quantum gravity. gr-qc/9905087Google Scholar
  16. 16.
    Asthekar A. (1999): Quantum mechanics of geometry, gr-qc/9901023Google Scholar
  17. 17.
    Connes A. (1994): Noncommutative Geometry. Academic Press, San DiegoMATHGoogle Scholar
  18. 18.
    Chamseddine A.H., Connes A. (1997): The spectral action principle. Commun. Math. Phys. 186, 731–750MathSciNetADSMATHCrossRefGoogle Scholar
  19. 19.
    Durrer R., Gasperini M., Sakellaradiou M., Veneziano G. (1999): Seeds of large scale anisotropy in string cosmology. Phys. Rev. 59, 043511MathSciNetADSGoogle Scholar
  20. 20.
    Aharony O., Gerbser S.S., Maldacen J., Ooguri H., Oz Y. (1999): Large N field theory, string theory and gravity, hep-th/9905111Google Scholar
  21. 21.
    Makhankov V.D., Rybakov Y.P., Sanyuk V.l. (1993): The Skyrme Model: Fundamentals, Methods, Applications. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  22. 22.
    Houghton C.J., Manton N.S., Sutcliffe P.M. (1998): Rational maps, monopoles and skyrmions. Nucl. Phys. B 510, 507–537MathSciNetADSMATHCrossRefGoogle Scholar
  23. 23.
    Holland R.P. (1993): The de Broglie-Bohm theory of motion and quantum field theory. Phys. Rep. 224, 95–150MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    Reid C. (1986): Hilbert-Courant. Springer, New York, quoted by Kichessamy S. (1993): Variational derivations of Einstein’s equations, op. cit. [3], p. 197CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2000

Authors and Affiliations

  • E. Sorace

There are no affiliations available

Personalised recommendations