Null Geodesics Joining Two Submanifolds in Stationary Lorentzian Manifolds

  • A. Salvatore
Conference paper


We present a variational principle, similar to the Fermat principle in Optic, concerning the existence of lightlike geodesies joining two submanifolds in stationary Lorentzian manifolds.


Riemannian Manifold Variational Principle Null Geodesic Lorentzian Manifold Differential Geom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Giannoni F., Masiello A., Piccione P. (1997): A variational theory for light rays in stably causal Lorentzian manifolds. Existence and regularity results. Comm. Math. Phys. 187, 375–415MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    Giannoni F., Masiello A., Piccione P. (1998): A Morse theory for light rays on stably causal Lorentzian manifolds. Ann. Inst. H. Poincaré, Physique thèorique 69, 359–412MathSciNetMATHGoogle Scholar
  3. 3.
    Masiello A., Piccione P. (1998): Shortening null geodesies in Lorentzian manifolds. Applications to closed light rays. Differential Geom. Appl. 8, 47–70MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Fortunato D., Masiello A. (1995): Fermat Principles in General Relativity and the Existence of Light Rays on Lorentzian Manifolds, in Proc. Variational and Local Methods in the Study of Hamiltonian Systems ICTP, ed. by A. Ambrosetti, G.F. Dell’Antonio, World Scientific, Singapore, pp. 34–64Google Scholar
  5. 5.
    Hawking S.W., Ellis G.ER. (1973): The Large Scale Structure of Space-Time. Cambridge University Press, CambridgeMATHCrossRefGoogle Scholar
  6. 6.
    Fortunato D., Giannoni F., Masiello A. (1995): A Fermat principle for stationary space times and applications to light rays. J. Geom. Phys. 15, 159–188MathSciNetADSMATHCrossRefGoogle Scholar
  7. 7.
    Molina J. (1996): Existence and multiplicity of normal geodesies on static space-time manifolds. Bull. Un. Mat. Ital. A 10, 305–318MathSciNetMATHGoogle Scholar
  8. 8.
    Candela A.M. (1996): Lightlike periodic trajectories in space-times. Ann. Mat. PuraAppl. CLXXI, 131–158MathSciNetCrossRefGoogle Scholar
  9. 9.
    Candela A.M., Salvatore A. (1997): Light rays joining two submanifolds in space-times. J. Geom. Phys. 22, 281–297MathSciNetADSMATHCrossRefGoogle Scholar
  10. 10.
    Grove K. (1973): Condition (C) for the energy integral on certain path spaces and applications to the theory of geodesies. J. Differential Geom. 8, 207–223MathSciNetMATHGoogle Scholar
  11. 11.
    Salvatore A. (1996): Trajectories of dynamical systems joining two given submanifolds. Differential Integral Equations 9, 779–790MathSciNetMATHGoogle Scholar
  12. 12.
    Klingenberg W. (1982): Riemannian Geometry, de Gruyter, BerlinMATHGoogle Scholar
  13. 13.
    Giannoni F., Masiello A. (1991): On the existence of geodesies on stationary Lorentz manifolds with convex boundary. J. Funct. Anal. 101, 340–369MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Schwartz J.T. (1969): Nonlinear Functional Analysis. Gordon and Breach, New YorkMATHGoogle Scholar
  15. 15.
    Fadell E., Husseini S. (1991): Category of loop spaces of open subsets in Euclidean space. Nonlinear Anal. TMA 17, 1153–1161MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2000

Authors and Affiliations

  • A. Salvatore

There are no affiliations available

Personalised recommendations