Time Extremizing Trajectories of Massive and Massless Objects in General Relativity

  • P. Piccione
Conference paper


This is a review article about recent results concerning one-dirnensional variational problems in Lorentzian geometry see [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. We will discuss from a mathematical point of view a general-relativistic version of Fermat’s principle, that characterizes the trajectories of massive and massless (photons) objects freely falling under the action of the gravitational field. We obtain two variational problems whose solutions are (future or past pointing) causal geodesies joining a spacelike submanifold P and a timelike submanifold Γ of M. Moreover, we will present two general-relativistic versions of the classical brachistochrone problem. The solutions of the brachistochrone variational problem represent trajectories of massive objects subject to the gravitational field and also to some constraint forces, and so they are not geodesies in the spacetime metric. We will distinguish between the travel time and the arrival time brachistochrones, which are curves extremizing the time measured respectively by a watch which is traveling together with the massive object and by a watch fixed at the arrival point in space.


Tangent Space Morse Theory Constraint Force Timelike Curve Maslov Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Giannoni F. (1996): A timelike extension of Fermat’s principle in general relativity. Comparisons with the lightlike case. Proceedings of the WCNA96, AthensGoogle Scholar
  2. 2.
    Giannoni F, Masiello A., Piccione P. (1997): A Variational Theory for Light Rays in Stably Causal Lorentzian Manifolds. Existence and Regularity Results. Commun. Math. Phys. 187, 375MathSciNetADSMATHCrossRefGoogle Scholar
  3. 3.
    Giannoni F., Masiello A., Piccione P. (1998): A timelike extension of Fermat’s principle in general relativity and applications. Calculus of Variations and PDE 6(3), 263–283MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Giannoni F., Masiello A., Piccione P. (1998): A Morse theory for light rays in stably causal Lorentzian manifolds. Ann. Inst. H. Poincaré, Physique Théorique 69, 359–412MathSciNetMATHGoogle Scholar
  5. 5.
    Giannoni F., Masiello A., Piccione P. (1999): A Morse theory for massive particles and photons in general relativity, in pressGoogle Scholar
  6. 6.
    Giannoni F, Perlick V, Piccione P., Verderesi J.A. (2000): Time minimizing curves in Lorentzian geometry. The general relativistic brachistochrone problem. Matematica Contemporanea, in stampa, Proc. 10th School of Differential Geometry, Belo Horizonte, July 1998Google Scholar
  7. 7.
    Giannoni F., Piccione P. (1998): An existence theory for relativistic brachistochrones in stationary Spacetimes, J. Math. Phys. 39(11), 6137–6152MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    Giannoni F., Piccione P. (1999): The arrival time brachistochrones in a general relativistic spacetime, in pressGoogle Scholar
  9. 9.
    Perlick V. (1990): On Fermat’s principle in general relativity: I. The general case. Class. Quantum Grav. 7, 1319–1331MathSciNetADSMATHCrossRefGoogle Scholar
  10. 10.
    Perlick V. (1991 ): The brachistochrone problem in a stationary space-time. J. Math. Phys. 32(11), 3148–3157MathSciNetADSMATHCrossRefGoogle Scholar
  11. 11.
    Perlick V., Piccione P. (1997): The brachistochrone problem in arbitrary spacetimes. RT-MAT 97-16, IME, Universidade de Sâo Paulo. Preprint LANL math. DG/9905096Google Scholar
  12. 12.
    Perlick V., Piccione P. (1999): A general-relativistic Fermat principle for extended light sources and extended receivers. General Relativity and Gravitation 30(10), 1461–1476MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Sachs R., Wu H. (1977): General Relativity for Mathematicians. Springer, New YorkMATHCrossRefGoogle Scholar
  14. 14.
    Brezis H. (1983): Analyse Fonctionelle. Masson, ParisGoogle Scholar
  15. 15.
    Palais R. (1968): Foundations of Global Nonlinear Analysis. Benjamin, New YorkGoogle Scholar
  16. 16.
    Beem J.K., Ehrlich P.E., Easley K.L. (1996): Global Lorentzian Geometry, Marcel Dekker, New York and BaselMATHGoogle Scholar
  17. 17.
    O’Neill B. (1983): Semi-Riemannian Geometry with Applications to Relativity. Academic Press, New YorkMATHGoogle Scholar
  18. 18.
    Lang S. (1985): Differential Manifolds. Springer, Berlin-Heidelber-New YorkMATHCrossRefGoogle Scholar
  19. 19.
    Masiello A. (1994): Variational Methods in Lorentzian Geometry. Pitman Research Notes in Mathematics 309, Longman, LondonGoogle Scholar
  20. 20.
    Hawking S.W., Ellis G.F (1973): The large scale structure of space-time. Cambridge University Press, CambridgeMATHCrossRefGoogle Scholar
  21. 21.
    Piccione P. (1998): Causal Trajectories between Submanifolds in Lorentzian Geometry. 7th International Conference of Differential Geometry and Applications, Masaryk University in Brno (Czech Republic), pp. 631–644Google Scholar
  22. 22.
    Kovner I. (1990): Fermat principle in arbitrary gravitational fields. Astrophysical J. 351, 114–120ADSCrossRefGoogle Scholar
  23. 23.
    Levi Civita T. (1928, 1986): Fondamenti di Meccanica Relativistica. Zanichelli, BolognaMATHGoogle Scholar
  24. 24.
    Mercuri F., Piccione P., Tausk D.V (1999): Stability of the focal and geometric index in semi-Riemannian geometry via the Maslov index. RT-MAT 99-08. Universidade de São Paulo, Brazil, PreprintGoogle Scholar
  25. 25.
    Giannoni F., Piccione P., Tausk D. (1998): Morse theory for the travel time brachistochrones in stationary spacetimes. PreprintGoogle Scholar
  26. 26.
    Giannoni F., Piccione P., Verderesi J.A. (1997): An approach to the relativistic brachistochrone problem by sub-Riemannian geometry, J. Math. Phys. 38(12), 6367–6381MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2000

Authors and Affiliations

  • P. Piccione

There are no affiliations available

Personalised recommendations