Advertisement

The Prolongation Problem for the Heavenly Equation

  • M. Palese
  • R. A. Leo
  • G. Soliani

Abstract

We provide an exact regular solution of an operator system arising as the prolongation structure associated with the heavenly equation. This solution is expressed in terms of operator Bessel coefficients.

Keywords

Operator Equation Conformal Symmetry Regular Operator Einstein Space Gation Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boyer C, Finley J.D. (1982): Killing vectors in self-dual, Euclidean Einstein spaces. J. Math. Phys. 23, 1126–1128MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    Gegenberg J.D., Das A. (1984): Stationary Riemannian space-times with self-dual curvature. Gen. Relativity and Gravitation 16, 817–829MathSciNetADSMATHCrossRefGoogle Scholar
  3. 3.
    Gibbons G.W., Hawking S.W. (1978): Gravitational Multi-Instantons. Phys. Lett. B 78, 430–432ADSCrossRefGoogle Scholar
  4. 4.
    Lebrun C. (1991): Explicit self-dual metrics on C P 2#...#C P 2. J. Diff. Geom. 34, 223MathSciNetMATHGoogle Scholar
  5. 5.
    Plebanski J.F. (1975): Some solutions of complex Einstein equations. J. Math. Phys. 16, 2395–2402MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Park Q-Han (1990): Extended conformai symmetries in real heavens. Phys. Lett. B 236, 429–432MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Alfinito E., Soliani G., Solombrino L. (1997): The symmetry structure of the heavenly equation. Lett. Math. Phys. 41, 379–389MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Estabrook F.B., Wahlquist H.D. (1976): Prolongation structures of nonlinear evolution equations. II, J. Math. Phys. 17, 1293–1297MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9.
    Morris H.C. (1976): Prolongation structures and nonlinear evolution equations in two spatial dimensions. J. Math. Phys. 17, 1870–1872ADSCrossRefGoogle Scholar
  10. 10.
    Tondo G.S. (1985): The eigenvalue problem for the Three-Wave Resonant Interaction in (2+1) dimensions via the prolongation structure. Lett. Nuovo Cimento 44, 297–302MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    Whalquist H.D., Estabrook F.B. (1975): Prolongation structures of nonlinear evolution equations. J. Math. Phys. 16, 1–7ADSCrossRefGoogle Scholar
  12. 12.
    Watson G.N. (1952): A Treatise on the Theory of Bessel Functions. Cambridge University Press, CambridgeGoogle Scholar
  13. 13.
    Baker H.F. (1904): Alternant and continuous group. Proc. London Math. Soc. (2) 3, 24–47; Campbell J.E. (1898): On a law of combination of operators. Proc. London Math. Soc. 29, 14–32; Hausdorff F. (1906): The symbolic exponential formula in group theory. Ber. Verh. Sachs. Gess. Wiss. Leipzig. Math. Phys. Kl. 58, 19–48Google Scholar

Copyright information

© Springer-Verlag Italia 2000

Authors and Affiliations

  • M. Palese
  • R. A. Leo
  • G. Soliani

There are no affiliations available

Personalised recommendations