Skip to main content

Black Holes and Solitons

  • Conference paper
Recent Developments in General Relativity

Abstract

The Two-dimensional Jackiw-Teitelboim gravity is represented as a completely integrable nonlinear reaction — diffusion system, whose Euclidean version leads to the non-linear Schrödinger equation. The soliton-like solutions, to such systems called dissipatons, characterize completely the black holes of the gravity model under consideration (the black hole horizon, the Hawking temperature and the causal structure). Collision of black holes is described in terms of elastic scattering of dissipatons, which shows a novel transmissionless character, creating a metastable state with a specific lifetime. Finally, alternative descriptions of the model in terms of other completely integrable systems are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jackiw R. (1984): Liouville Field Theory: A Two-Dimensional Model for Gravity, in Quantum Theory of Gravity, ed. by S. Christensen, Adam Hilger, Bristol; Jackiw R. (1985): Lower dimensional Gravity. Nucl. Phys. B 252, 343

    Google Scholar 

  2. Teitelboim C. (1983): Gravitation and Hamiltonian Structure in Two Space-time Dimen-sions. Phys. Lett. B 126, 41; The Hamiltonian Structure of Two-Dimensional Space Time and its Relation with the Conformai Anomaly, in Quantum Theory of Gravity, ed by S. Christensen, Adam Hilger, Bristol, pp. 327–344

    Article  MathSciNet  ADS  Google Scholar 

  3. Cadoni M., Mignemi S. (1995): Phys. Rev. D 51, 4319

    Article  MathSciNet  ADS  Google Scholar 

  4. Bañados M., Teitelboim C, Zanelli J. (1992): Phys. Rev. Lett. 69, 1849

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Bañados M., Teitelboim C, Zanelli J. (1993): Phys. D 48,1506

    ADS  Google Scholar 

  6. Hawking S.W. (1975): Comm. Math. Phys. 43, 199

    Article  MathSciNet  ADS  Google Scholar 

  7. Kumar A., Ray K. (1995): Phys. Lett. B 351, 431

    Article  MathSciNet  ADS  Google Scholar 

  8. Elizalde E., Fosalba-Vela P., Natulin S., Odintsov S.D. (1995): Phys. Lett. B 352, 235

    Article  ADS  Google Scholar 

  9. Lemos LPS. (1996): Phys. Rev. D 54, 6206

    Article  MathSciNet  ADS  Google Scholar 

  10. Gegenberg J., Kunstatter G. (1997): Solitons and Black Holes, hep-th/9707181

    Google Scholar 

  11. Martina L., Pashaev O.K., Soliani G. (1997): Class. Quant. Grav. 14, 3179

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Martina L., Pashaev O.K., Soliani G. (1998): Phys. Rev. D 58, 84025

    Article  MathSciNet  ADS  Google Scholar 

  13. Eguchi T., Gilkey P.B., J. Hanson A. (1980): Phys. Rev. 66, 213–393

    Google Scholar 

  14. Fukuyama T., Kamimura K. (1985): Phys. Lett. B 160, 259

    Article  MathSciNet  ADS  Google Scholar 

  15. Isler K., Trugenberger C.A. (1989): Phys. Rev. Lett. 63, 834

    Article  MathSciNet  ADS  Google Scholar 

  16. Chamseddine A.H., Wyler D. (1990): Nucl. Phys. B 340, 595

    Article  MathSciNet  ADS  Google Scholar 

  17. Montano D., Sonnenschein J. (1989): Nucl. Phys. B 324, 348

    Article  MathSciNet  ADS  Google Scholar 

  18. Birmingham D., Blau M., Rakowski M., Thompson G. (1991): Phys. Rep. 209, 129

    Article  MathSciNet  ADS  Google Scholar 

  19. Achucarro A., Townsend P. (1986): Phys. Lett. B 180, 89

    Article  MathSciNet  ADS  Google Scholar 

  20. Witten E. (1988/89): Nucl. Phys. B 311, 46

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Fernando S., Mansouri F.: Internal structure of Black Holes and Chern-Simons Theory in (2 + l)-Dimensions. hep-th 9804147

    Google Scholar 

  22. Cartan E. (1937): Théorie des Groupes Finis et Continus et la Géométrie Différentielle traitées par la Méthode du Repér Mobile. Gauthier-Villars, Paris

    Google Scholar 

  23. Prigogine I. (1980): From Being to Becoming. Time and Complexity in the Physical Sciences. W. H. Freeman and C, San Francisco

    Google Scholar 

  24. Faddeev L., Takhtajan L. (1987): Hamiltonian Methods in the Theory of Solitons. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  25. Zakharov V.E., Shabat A.B. (1971): Zh. Eksp. Teor. Fiz. 61, 118

    Google Scholar 

  26. Frolov VP. (1992): Phys. Rev. D 46, 5383

    Article  MathSciNet  ADS  Google Scholar 

  27. Lemos LPS. (1996): Phys. Rev. D 54, 6206

    Article  MathSciNet  ADS  Google Scholar 

  28. Hasegawa A., Kodama Y (1995): Solitons in Optical Communications. Clarendon Press, Oxford

    MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Italia

About this paper

Cite this paper

Martina, L. (2000). Black Holes and Solitons. In: Casciaro, B., Fortunato, D., Francaviglia, M., Masiello, A. (eds) Recent Developments in General Relativity. Springer, Milano. https://doi.org/10.1007/978-88-470-2113-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2113-6_25

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0068-1

  • Online ISBN: 978-88-470-2113-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics