Black Holes and Solitons

  • L. Martina


The Two-dimensional Jackiw-Teitelboim gravity is represented as a completely integrable nonlinear reaction — diffusion system, whose Euclidean version leads to the non-linear Schrödinger equation. The soliton-like solutions, to such systems called dissipatons, characterize completely the black holes of the gravity model under consideration (the black hole horizon, the Hawking temperature and the causal structure). Collision of black holes is described in terms of elastic scattering of dissipatons, which shows a novel transmissionless character, creating a metastable state with a specific lifetime. Finally, alternative descriptions of the model in terms of other completely integrable systems are discussed.


Black Hole Event Horizon Bright Soliton Dilaton Field Euclidean Version 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jackiw R. (1984): Liouville Field Theory: A Two-Dimensional Model for Gravity, in Quantum Theory of Gravity, ed. by S. Christensen, Adam Hilger, Bristol; Jackiw R. (1985): Lower dimensional Gravity. Nucl. Phys. B 252, 343Google Scholar
  2. 2.
    Teitelboim C. (1983): Gravitation and Hamiltonian Structure in Two Space-time Dimen-sions. Phys. Lett. B 126, 41; The Hamiltonian Structure of Two-Dimensional Space Time and its Relation with the Conformai Anomaly, in Quantum Theory of Gravity, ed by S. Christensen, Adam Hilger, Bristol, pp. 327–344MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    Cadoni M., Mignemi S. (1995): Phys. Rev. D 51, 4319MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Bañados M., Teitelboim C, Zanelli J. (1992): Phys. Rev. Lett. 69, 1849MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    Bañados M., Teitelboim C, Zanelli J. (1993): Phys. D 48,1506ADSGoogle Scholar
  6. 6.
    Hawking S.W. (1975): Comm. Math. Phys. 43, 199MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Kumar A., Ray K. (1995): Phys. Lett. B 351, 431MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Elizalde E., Fosalba-Vela P., Natulin S., Odintsov S.D. (1995): Phys. Lett. B 352, 235ADSCrossRefGoogle Scholar
  9. 9.
    Lemos LPS. (1996): Phys. Rev. D 54, 6206MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    Gegenberg J., Kunstatter G. (1997): Solitons and Black Holes, hep-th/9707181Google Scholar
  11. 11.
    Martina L., Pashaev O.K., Soliani G. (1997): Class. Quant. Grav. 14, 3179MathSciNetADSMATHCrossRefGoogle Scholar
  12. 12.
    Martina L., Pashaev O.K., Soliani G. (1998): Phys. Rev. D 58, 84025MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Eguchi T., Gilkey P.B., J. Hanson A. (1980): Phys. Rev. 66, 213–393Google Scholar
  14. 14.
    Fukuyama T., Kamimura K. (1985): Phys. Lett. B 160, 259MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    Isler K., Trugenberger C.A. (1989): Phys. Rev. Lett. 63, 834MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    Chamseddine A.H., Wyler D. (1990): Nucl. Phys. B 340, 595MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    Montano D., Sonnenschein J. (1989): Nucl. Phys. B 324, 348MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    Birmingham D., Blau M., Rakowski M., Thompson G. (1991): Phys. Rep. 209, 129MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    Achucarro A., Townsend P. (1986): Phys. Lett. B 180, 89MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    Witten E. (1988/89): Nucl. Phys. B 311, 46MathSciNetADSMATHCrossRefGoogle Scholar
  21. 21.
    Fernando S., Mansouri F.: Internal structure of Black Holes and Chern-Simons Theory in (2 + l)-Dimensions. hep-th 9804147Google Scholar
  22. 22.
    Cartan E. (1937): Théorie des Groupes Finis et Continus et la Géométrie Différentielle traitées par la Méthode du Repér Mobile. Gauthier-Villars, ParisGoogle Scholar
  23. 23.
    Prigogine I. (1980): From Being to Becoming. Time and Complexity in the Physical Sciences. W. H. Freeman and C, San FranciscoGoogle Scholar
  24. 24.
    Faddeev L., Takhtajan L. (1987): Hamiltonian Methods in the Theory of Solitons. Springer, Berlin Heidelberg New YorkMATHGoogle Scholar
  25. 25.
    Zakharov V.E., Shabat A.B. (1971): Zh. Eksp. Teor. Fiz. 61, 118Google Scholar
  26. 26.
    Frolov VP. (1992): Phys. Rev. D 46, 5383MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    Lemos LPS. (1996): Phys. Rev. D 54, 6206MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    Hasegawa A., Kodama Y (1995): Solitons in Optical Communications. Clarendon Press, OxfordMATHGoogle Scholar

Copyright information

© Springer-Verlag Italia 2000

Authors and Affiliations

  • L. Martina

There are no affiliations available

Personalised recommendations