Advertisement

Bar Mode Instability in Relativistic Rotating Stars

Conference paper

Abstract

Rapidly spinning neutron stars, with angular velocity higher than a given threshold, may become secularly unstable to an l = m = 2 mode and deform into a bar configuration. This instability sets in only in the presence of a suitable dissipative mechanism, such as viscosity or gravitational wave emission, and in Newtonian theory its point of onset does not depend on the nature of dissipation. The first numerical investigations, however, seem to suggest that, in general relativity, the instability is weakened when driven by viscous dissipation and strengthened when driven by gravitational radiation.

After a review of the physical problem and of previous investigations, we schematically present an analytic treatment carried out in the framework of post-Newtonian (PN) gravitation. In this analysis, we model rotating stars by homogeneous, rigidly rotating, triaxial ellipsoids employing an energy variational principle to construct relativistic equilibrium sequences and locate the point of onset of the bar mode instability along each sequence. The spacetime metric is obtained by solving Einstein’s equations of general relativity in 3+1 ADM form, and we focus on the viscosity-driven instability.

We find that the value of the eccentricity, as well as related ratios like Ω2/(πϱ 0) and T/|W| (= rotational kinetic energy / gravitational potential energy), all increase at the onset of instability as the star becomes more relativistic. Since higher degrees of rotation are required to trigger a viscosity-driven bar mode instability as the star becomes more compact, the effect of general relativity is to weaken the instability, even to PN order.

Keywords

Gravitational Radiation Gravitational Potential Energy Newtonian Limit Newtonian Theory Triaxial Ellipsoid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chandrasekhar S. (1969): Ellipsoidal Figures of Equilibrium. Yale Univ. Press, New HavenMATHGoogle Scholar
  2. 2.
    Bonazzola S., Marek J.A. (1994): Ann. Rev. Nucl. Part. Sci. 45, 655ADSGoogle Scholar
  3. 3.
    Thorne K.S. (1987): Gravitational Radiation, in 300 Years of Gravitation, ed. by S.W. Hawking, W. Israel, Cambridge University Press, CambridgeGoogle Scholar
  4. 4.
    Lai D., Shapiro S.L. (1995): ApJ 442, 259ADSCrossRefGoogle Scholar
  5. 5.
    Schutz B.F. (1997): in Mathematics of Gravitation. II. Gravitational Wave Detection, ed. by A. Krolak (Banach Center, Warsaw), to appearGoogle Scholar
  6. 6.
    Blanchet L. (1996): in Les Mouches School “Astrophysical Sources of Gravitational Radiation” (Les Mouches, France, Sept. 26–Oct. 6, (1995). ed. by J.-A. Marek, J.-P. LasotaGoogle Scholar
  7. 7.
    Rasio F.A., Shapiro S.L. (1992): ApJ 401, 226ADSCrossRefGoogle Scholar
  8. 8.
    Rasio F.A., Shapiro S.L. (1994): ApJ 432, 242ADSCrossRefGoogle Scholar
  9. 9.
    Lai D., Rasio F.A., Shapiro S.L. (1993a): ApJs 88, 205ADSCrossRefGoogle Scholar
  10. 10.
    Lai D., Rasio F.A., Shapiro S.L. (1993b): ApJ 406, L63ADSCrossRefGoogle Scholar
  11. 11.
    Lai D., Rasio F.A., Shapiro S.L. (1994a): ApJ 420, 811ADSCrossRefGoogle Scholar
  12. 12.
    Lai D., Rasio F.A., Shapiro S.L. (1994b): ApJ 423, 344ADSCrossRefGoogle Scholar
  13. 13.
    Lai D., Rasio F.A., Shapiro S.L. (1994c): ApJ 437, 742ADSCrossRefGoogle Scholar
  14. 14.
    Baumgarte T.W., Cook G.B., Scheel M.A., Shapiro S.L., Teukolsky S.A. (1997): PRD submittedGoogle Scholar
  15. 15.
    Iben I., Tutukov A.V. (1984): ApJs 54, 335ADSCrossRefGoogle Scholar
  16. 16.
    Yungelson L.R., Livio M., Tutukov A.V., Saffer R.A. (1994): ApJ 420, 336ADSCrossRefGoogle Scholar
  17. 17.
    Chen K., Leonard P.J.T. (1993): ApJ 390, 486Google Scholar
  18. 18.
    Wagoner R.V. (1984): AJ 278, 345ADSCrossRefGoogle Scholar
  19. 19.
    Shapiro S.L., Zane S. (1998): ApJs 117, 531ADSCrossRefGoogle Scholar
  20. 20.
    Chandrasekhar S. (1970): PRL 24, 611ADSCrossRefGoogle Scholar
  21. 21.
    Friedman J.L., Schutz B.F. (1978): ApJ 222, 281ADSCrossRefGoogle Scholar
  22. 22.
    Bonazzola S., Gourgoulhon E. (1996): Proceedings of the Les Houches School “Astrophysical Sources of Gravitational Radiation” ed. by J.-A. Marek, J.-P. Lasota, Les Houches, France, Sept. 26–Oct. 6, 1995Google Scholar
  23. 23.
    Kokkotas K., Stergioulas N. (1999): A&A 341, 110ADSGoogle Scholar
  24. 24.
    Lindblom L., Mendell G. (1994): ApJ 421, 689ADSCrossRefGoogle Scholar
  25. 25.
    Bonazzola S., Frieben J., Gourgoulhon E. (1996): ApJ 460, 379ADSCrossRefGoogle Scholar
  26. 26.
    Andersson N., Kokkotas K.D., Stergioulas N. (1999): ApJ 516, 307ADSCrossRefGoogle Scholar
  27. 27.
    Lindblom L., Detweiler S.L. (1977): ApJ 444, 804ADSCrossRefGoogle Scholar
  28. 28.
    Ostriker J.P., Tassoul J.-L. (1969): ApJ 155, 987ADSCrossRefGoogle Scholar
  29. 29.
    Bodenheimer P., Ostriker J.P. (1973): ApJ 180, 159ADSCrossRefGoogle Scholar
  30. 30.
    Durisen R.H. (1975): ApJ 199, 179ADSCrossRefGoogle Scholar
  31. 31.
    Tassoul J.-L. (1978): Theory of Rotating Stars. Princeton University Press, PrincetonGoogle Scholar
  32. 32.
    Ipser J.R., Managan R.A. (1981): ApJ 250, 362MathSciNetADSCrossRefGoogle Scholar
  33. 33.
    Hachisu L, Eriguchi Y. (1982): Prog. Theor. Phys. 68, 206MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    Hachisu I. (1986): ApJs 61, 479ADSCrossRefGoogle Scholar
  35. 35.
    Hachisu I. (1986b): ApJs 62, 461ADSCrossRefGoogle Scholar
  36. 36.
    Jeans J.H. (1919): Problems of Cosmogony and Stellar Dynamics. Cambridge University Press, CambridgeMATHGoogle Scholar
  37. 37.
    Jeans J.H. (1928): Astronomy and Cosmogony. Cambridge University Press, CambridgeMATHGoogle Scholar
  38. 38.
    James R.A. (1964): ApJ 140, 552ADSCrossRefGoogle Scholar
  39. 39.
    Ipser J.R., Managan R.A. (1985): ApJ 292, 517MathSciNetADSCrossRefGoogle Scholar
  40. 40.
    Zel’dovich Y.A.B., Novikov I.D. (1971): Relativistic Astrophysics, Vol. 1. Chicago University Press, ChicagoGoogle Scholar
  41. 41.
    Shapiro S.L., Teukolsky S.A. (1983): Black Holes, White Dwarfs and Neutron Stars. Wiley, New YorkCrossRefGoogle Scholar
  42. 42.
    Butterworth I.M., Ipser J.R. (1976): ApJ 204, 200MathSciNetADSCrossRefGoogle Scholar
  43. 43.
    Friedman J.L., Ipser J.R., Parker L. (1986): ApJ 304, 115ADSCrossRefGoogle Scholar
  44. 44.
    Cook G.B., Shapiro S.L., Teukolsky S.A. (1992): ApJ 398, 203ADSCrossRefGoogle Scholar
  45. 45.
    Cook G.B., Shapiro S.L., Teukolsky S.A. (1994a): ApJ 422, 227ADSCrossRefGoogle Scholar
  46. 46.
    Cook G.B., Shapiro S.L., Teukolsky S.A. (1994b): ApJ 424, 823ADSCrossRefGoogle Scholar
  47. 47.
    Cook G.B., Shapiro S.L., Teukolsky S.A. (1996): PRD 5310, 5533MathSciNetADSCrossRefGoogle Scholar
  48. 48.
    Stergioulas N., Friedman J.L. (1998): ApJ 492, 301ADSCrossRefGoogle Scholar
  49. 49.
    Stergioulas N. (1997): Structure and stability of rotating relativistic stars. Ph.D. Thesis, University of Wisconsin-MilwaukeeGoogle Scholar
  50. 50.
    Bonazzola S., Frieben J., Gourgoulhon E. (1998): A&A 331, 280ADSGoogle Scholar
  51. 51.
    Friedman J.L., Schutz B.F. (1995): ApJ 200, 204MathSciNetADSCrossRefGoogle Scholar
  52. 52.
    Cutler C. (1991): ApJ 374, 248MathSciNetADSCrossRefGoogle Scholar
  53. 53.
    Cutler C, Lindblom L. (1992): ApJ 385, 630ADSCrossRefGoogle Scholar
  54. 54.
    Lindblom L. (1995): ApJ 438, 265ADSCrossRefGoogle Scholar
  55. 55.
    Yoshida S., Eriguchi Y (1997): ApJ 490, 779ADSCrossRefGoogle Scholar
  56. 56.
    Bardeen J.M. (1971): ApJ 167, 425MathSciNetADSCrossRefGoogle Scholar
  57. 57.
    Wilson J.R., Matthews G.J. (1989): Frontiers in Numerical Relativity. Cambridge University Press, CambridgeGoogle Scholar
  58. 58.
    Wilson J.R., Matthews G.J. (1995): PRL 75, 4161ADSCrossRefGoogle Scholar
  59. 59.
    Wilson J.R. (1990): in Texas Symposium on 3-Dimensional Numerical Relativity, ed. by R.A. Matzner, University of Texas, Austin, TexasGoogle Scholar
  60. 60.
    Arnowitt R., Deser S., Misner C.W. (1962): The Dynamics of General Relativity, in Gravitation: An Introduction to Current Research, ed. by L. Witten, J. Wiley, New YorkGoogle Scholar
  61. 61.
    Baumgarte T.W, Cook G.B., Scheel M.A., Shapiro S.L., Teukolsky S.A. (1997): PRL 79, 1182ADSCrossRefGoogle Scholar
  62. 62.
    Bowen J.M., York J.W.Y. (1980): PRD 21(8), 2047ADSCrossRefGoogle Scholar
  63. 63.
    Chandrasekhar S. (1965): ApJ 142, 1513MathSciNetADSCrossRefGoogle Scholar
  64. 64.
    Taniguchi K., Asada H., Shibata M. (1998): Irrotational and Incompressible Ellipsoids in the First Post-Newtonian Approximation of General Relativity, gr-qc/9809039Google Scholar
  65. 65.
    Taniguchi K. (1999): http://xxx.lanl.gov/abs/gr-qc/9901048; Prog. Theor. Phys. in pressGoogle Scholar

Copyright information

© Springer-Verlag Italia 2000

Authors and Affiliations

  • S. Zane

There are no affiliations available

Personalised recommendations