Skip to main content
  • 393 Accesses

Abstract

According to the generalized second law of thermodynamics, the quantity that never decreases in irreversible processes involving gravity is the sum of the entropy content of ordinary matter plus the entropy provided by the black holes. As the entropy of matter has a statistical description in terms of microscopic degrees of freedom, it seems that the entropy of black holes also should have such a description. In this contribution, several proposal for address this problem are reviewed, including quantum fields theory, strings and the very recent holographic ideas, resting on the correspondence between anti-de Sitter space and conformai field theories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bardeen J.M., Carter B., Hawking S.W. (1973): Commun. Math. Phys. 31, 161

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Bekenstein J.D. (1973): Phys. Rev. D 7, 2333

    Article  MathSciNet  ADS  Google Scholar 

  3. Hawking S.W. (1975): Commun. Math. Phys. 43, 199

    Article  MathSciNet  ADS  Google Scholar 

  4. Gibbons G.W., Hawking S.W. (1977): Phys. Rev. D 15, 2572

    Article  MathSciNet  ADS  Google Scholar 

  5. Zurek W.H., Thorne K.S. (1985): Phys. Rev. Lett. 54, 2171

    Article  MathSciNet  ADS  Google Scholar 

  6. ’t Hooft G. (1985): Nucl. Phys. B 256, 727

    Article  ADS  Google Scholar 

  7. Bombelli L., Koul R.K., Lee J., Sorkin R.D. (1986): Phys. Rev. D 34, 373

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. York J.W. Jr. (1983): Phys. Rev. D 28, 2929

    Article  MathSciNet  ADS  Google Scholar 

  9. Susskind L., Uglum J.R. (1994): Phys. Rev. D 50, 2700

    Article  MathSciNet  ADS  Google Scholar 

  10. Horowitz G.T., Polchinsky J. (1997): Phys. Rev. D 55, 6189

    Article  MathSciNet  ADS  Google Scholar 

  11. Klemm D., Vanzo L. (1998): Phys. Rev. 58, 104025

    MathSciNet  Google Scholar 

  12. Strominger A., Vafa C. (1996): Phys. Lett. B 379, 99

    Article  MathSciNet  ADS  Google Scholar 

  13. Maldacena J. (1998): Adv. Theor. Math. Phys. 2, 231

    MathSciNet  ADS  MATH  Google Scholar 

  14. Witten E. (1998): Adv. Theor. Math. Phys. 2. 253

    MathSciNet  ADS  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Italia

About this paper

Cite this paper

Vanzo, L. (2000). Black Hole Entropy. In: Casciaro, B., Fortunato, D., Francaviglia, M., Masiello, A. (eds) Recent Developments in General Relativity. Springer, Milano. https://doi.org/10.1007/978-88-470-2113-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2113-6_18

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0068-1

  • Online ISBN: 978-88-470-2113-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics