Black Hole Entropy

  • L. Vanzo
Conference paper


According to the generalized second law of thermodynamics, the quantity that never decreases in irreversible processes involving gravity is the sum of the entropy content of ordinary matter plus the entropy provided by the black holes. As the entropy of matter has a statistical description in terms of microscopic degrees of freedom, it seems that the entropy of black holes also should have such a description. In this contribution, several proposal for address this problem are reviewed, including quantum fields theory, strings and the very recent holographic ideas, resting on the correspondence between anti-de Sitter space and conformai field theories.


Black Hole Event Horizon Open String Black Hole Solution Black Hole Entropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bardeen J.M., Carter B., Hawking S.W. (1973): Commun. Math. Phys. 31, 161MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    Bekenstein J.D. (1973): Phys. Rev. D 7, 2333MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    Hawking S.W. (1975): Commun. Math. Phys. 43, 199MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Gibbons G.W., Hawking S.W. (1977): Phys. Rev. D 15, 2572MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    Zurek W.H., Thorne K.S. (1985): Phys. Rev. Lett. 54, 2171MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    ’t Hooft G. (1985): Nucl. Phys. B 256, 727ADSCrossRefGoogle Scholar
  7. 7.
    Bombelli L., Koul R.K., Lee J., Sorkin R.D. (1986): Phys. Rev. D 34, 373MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    York J.W. Jr. (1983): Phys. Rev. D 28, 2929MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Susskind L., Uglum J.R. (1994): Phys. Rev. D 50, 2700MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    Horowitz G.T., Polchinsky J. (1997): Phys. Rev. D 55, 6189MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    Klemm D., Vanzo L. (1998): Phys. Rev. 58, 104025MathSciNetGoogle Scholar
  12. 12.
    Strominger A., Vafa C. (1996): Phys. Lett. B 379, 99MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Maldacena J. (1998): Adv. Theor. Math. Phys. 2, 231MathSciNetADSMATHGoogle Scholar
  14. 14.
    Witten E. (1998): Adv. Theor. Math. Phys. 2. 253MathSciNetADSMATHGoogle Scholar

Copyright information

© Springer-Verlag Italia 2000

Authors and Affiliations

  • L. Vanzo

There are no affiliations available

Personalised recommendations