Cauchy-Perturbative Matching and Outer Boundary Conditions

  • L. Rezzolla
Conference paper


We present a new method of extracting gravitational radiation from three-dimensional numerical relativity codes and providing outer boundary conditions. Our approach matches the solution of a Cauchy evolution of Einstein’s equations to a set of one-dimensional linear wave equations on a curved background. We illustrate the mathematical properties of our approach and discuss a numerical module we have constructed for this purpose. This module implements the perturbative matching approach in connection with a generic three-dimensional numerical relativity simulation. Tests of its accuracy are presented.


Gravitational Wave Outer Boundary Extrinsic Curvature Binary Black Hole Outer Boundary Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Information about the Binary Black Hole Grand Challenge Alliance, its goals and the present status of its research can be found at the web page: Scholar
  2. 2.
    Gömez R., Lehner L., Marsa R.L., Winicour J. et al. (1998): Phys. Rev. Lett. 80, 3915ADSCrossRefGoogle Scholar
  3. 3.
    Cook G.B., Huq M.F., Klasky S.A., Scheel M.A.. et al. (1998): Phys. Rev. Lett. 80, 2512ADSCrossRefGoogle Scholar
  4. 4.
    Abrahams A.M., Rezzoila L., Rupright M.E. et al. (1998): Phys. Rev. Lett. 80, 1812ADSCrossRefGoogle Scholar
  5. 5.
    Thorne K.S. (1980): Rev. Mod. Phys. 52, 299MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Rupright M.E., Abrahams A.M., Rezzolla L. (1998): Phys. Rev. D 58, 044005MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Rezzolla, L., Abrahams A.M., Matzner R.A., Rupright M.E., Shapiro S.L. (1999): Phys. Rev. D 59, 064001ADSCrossRefGoogle Scholar
  8. 8.
    Bishop N.T. et al. (1996): Phys. Rev. Lett. 76, 4303; Bishop N.T., Gómez R., Lehner L., Winicour J. (1996): Phys. Rev. D 54, 6153MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9.
    Abrahams A.M., Evans CR. (1988): Phys. Rev. D 37, 317; (1990): Phys. Rev. D 42, 2585MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    Price R.H., Pullin J. (1994): Phys. Rev. Lett. 72, 3297; Abrahams A.M., Cook G. (1994): Phys. Rev. D 50, 2364; Abrahams A.M., Shapiro S.L., Teukolsky S.A. (1995): Phys. Rev. D 51, 4295; Abrahams A.M., Price R.H. (1996): Phys. Rev. D 53, 1963 and 1972MathSciNetADSMATHCrossRefGoogle Scholar
  11. 11.
    Choquet-Bruhat Y., York Jr. J.W. (1995): C. R. Acad. Sci. Série I, Paris 321, 1089; Abrahams A.M., Anderson A., Choquet-Bruhat Y, York Jr., J.W. (1995): Phys. Rev. Lett. 75, 3377MathSciNetMATHGoogle Scholar
  12. 12.
    Regge T., Wheeler J.A. (1957): Phys. Rev. 108, 1063; Zerilli F. (1970): Phys. Rev. Lett. 24 737MathSciNetADSMATHCrossRefGoogle Scholar
  13. 13.
    Moncrief V. (1974): Ann. Phys. 88, 323MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Scheel M.A. et al. (1997): Phys. Rev. D 56, 6320MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    Rezzolla L. et al. (1998): Phys. Rev. D 57, 1084MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    Israeli M., Orszag S.A. (1981): Journ. Comp. Phys. 41, 115; Marsa R.L., Choptuik M.W. (1996): Phys. Rev. D 54, 4929MathSciNetADSMATHCrossRefGoogle Scholar
  17. 17.
    Nakamura T., Oohara K., Kojima Y (1987): Prog. Theor. Phys. Suppl. 90, 76; Shibata M., Nakamura T. (1995): Phys. Rev. D 52, 5428MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2000

Authors and Affiliations

  • L. Rezzolla

There are no affiliations available

Personalised recommendations