Skip to main content

Applications of Calculus of Variations to General Relativity

  • Conference paper
Recent Developments in General Relativity

Abstract

We present some global results on Lorentzian geometry obtained by using global variational methods. In particular some results on the geodesic connectedness of Lorentzian manifolds and on the multiplicity of lightlike geodesies joining a point with a timelike curve are presented. Such results allow to give a mathematical description of the gravitational lens effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold V.I. (1989): Mathematical Methods of Classical Mechanics. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  2. Morse M. (1934): The Calculus of Variations in the Large. Coll. Lect. Am. Math. Soc. 18

    Google Scholar 

  3. Lusternik L.A., Schnirelmann L. (1934): Methodes Topologiques dans les Problèmes Variationelles. Gautier-Villars, Paris

    Google Scholar 

  4. Struwe M. (1996): Variational Methods. Springer, Berlin Heidelberg New York

    Book  MATH  Google Scholar 

  5. Palais R. (1963): Lusternik-Schnirelmann theory on Banach manifolds. Topology 5, 115–132

    Article  MathSciNet  Google Scholar 

  6. Klingenberg W. (1978): Lecture on Closed Geodesies. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  7. Bott R. (1982): Lectures on Morse Theory Old and New. Bull. Am. Math. Soc. 7, 331–358

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Spanier E.H. (1966): Algebraic Topology. McGraw Hill, New York

    MATH  Google Scholar 

  9. Milnor J. (1963): Morse Theory. Ann. of Math. Studies 51, Princeton University Press, Princeton

    MATH  Google Scholar 

  10. Masiello A. (1994): Variational Methods in Lorentzian Geometry. Pitman Research Notes in Mathematics 309, Longman, London

    MATH  Google Scholar 

  11. Palais R. (1963): Morse theory on Hilbert manifolds. Topology 2, 299–340

    Article  MathSciNet  MATH  Google Scholar 

  12. Palais R. (1970): Critical Point Theory and the Min-Max Principle. Proc. Symp. Pure Appl. Math. 15, 185–212

    Article  MathSciNet  Google Scholar 

  13. Palais R., Smale S. (1964): A Generalized Morse theory. Bull. Am. Math. Soc. 70, 165–171

    Article  MathSciNet  MATH  Google Scholar 

  14. Rabinowitz P.H. (1984): Min-Max Methods in Critical Point Theory with Applications to Differential Equations. CBMS Reg. Conf. Soc. in Math. 65 Amer. Math. Soc, Providence

    Google Scholar 

  15. Mawhin J., Willem M. (1989): Critical Point Theory and Hamiltonian Systems. Springer, Berlin Heidelberg New York

    Book  MATH  Google Scholar 

  16. Adams R. (1975): Sobolev spaces. Acad. Press, New York

    MATH  Google Scholar 

  17. Fadell E., Susseini S. (1991): Category of Loop Spaces of Open Subsets in Euclidean Space. Nonlinear Analysis T.M.A. 17, 1153–1161

    Article  MATH  Google Scholar 

  18. Benci V., Fortunato D. (1990): Existence of Geodesies for the Lorentz Metric of a Stationary Gravitational Field. Ann. H. Poincaré Analyse Non Linéaire 7, 27–35

    MathSciNet  MATH  Google Scholar 

  19. Beem J.K., Ehrlich P.E., Easley K. (1996): Global Lorentzian Geometry. Marcel Dekker, New York

    MATH  Google Scholar 

  20. Hawking S.W., Ellis G.F. (1973): The Large Scale Structure of Space-Time. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  21. O’NeilL B. (1983): Semi-riemannian Geometry with Applications to Relativity. Academic Press, New York

    MATH  Google Scholar 

  22. Beem J.K., Parker R.E. (1989): Pseudoconvexity and Geodesic Connectedness. Ann. Mat. Pura Appl. 155(4), 137–142

    Article  MathSciNet  MATH  Google Scholar 

  23. Penrose R. (1972): Techniques of Differential Topology in Relativity. Conf. Board Math. Sci 7. SIAM, Philadelphia

    Google Scholar 

  24. Giannoni F., Masiello A. (1991): On the Existence of Geodesies on Stationary Lorentz Manifolds with Convex Boundary. J. Funct. Anal. 101, 340–369

    Article  MathSciNet  MATH  Google Scholar 

  25. Benci V., Fortunato D., Giannoni F. (1992): On the existence of geodesies in static Lorentz Manifolds with Singular Boundary. Ann. Sc. Norm. Sup. Pisa 19(4), 255–289

    MathSciNet  MATH  Google Scholar 

  26. Giannoni F, Piccione P. (1999): An Intrinsic Approach to the Geodesical Connectedness of Stationary Lorentzian Manifolds. Comm. Anal. Geom. 7, 157–197

    MathSciNet  MATH  Google Scholar 

  27. Geroch R. (1970): Domains of Dependence. J. Math. Phys. 11, 437–449

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Benci V., Fortunato D., Masiello A. (1994): On the geodesic connectedness of Lorentzian manifolds. Math. Z. 217, 74–94

    Article  MathSciNet  Google Scholar 

  29. Giannoni F, Masiello A. (1995): Geodesies on Product Lorentzian Manifolds. Ann. Inst. H. Poincaré Analyse non linéaire 12, 27–60

    MathSciNet  MATH  Google Scholar 

  30. Fadell E. (1985): Lectures in Cohomological Index Theories of G-Spaces with Applications to Critical Point Theory. Sem. Dip. Mat. Université della Calabria, Cosenza

    Google Scholar 

  31. Fadell E., Husseini S. (1994): Relative category and coproducts. Rend. Sem. Mat. Fis. Milano 64, 99–117

    Article  MathSciNet  Google Scholar 

  32. Masiello A. (1994): Convex regions of Lorentzian manifolds. Ann. Mat. Pura Appl. 167(4), 299–322

    Article  MathSciNet  MATH  Google Scholar 

  33. Giannoni F., Masiello A. (1993): Geodesies on Lorentzian Manifolds with Quasi-Convex Boundary. Man. Math. 78, 381–396

    Article  MathSciNet  MATH  Google Scholar 

  34. Schneider P., Ehlers J., Falco E. (1992): Gravitational Lensing. Springer, Berlin Heidelberg New York

    Google Scholar 

  35. Weyl H. (1917): Zur Gravitationstheorie. Ann. Phys. 54, 117–145

    Article  MATH  Google Scholar 

  36. Levi-Civita T. (1928): Fondamenti di Meccanica Relativistica. Zanichelli, Bologna

    MATH  Google Scholar 

  37. Uhlenbeck K. (1975): A Morse Theory for Geodesies on a Lorentz Manifold. Topology 14, 69–90

    Article  MathSciNet  MATH  Google Scholar 

  38. Fortunato D., Giannoni F, Masiello A. (1995): A Fermat Principle for Stationary Space-Times with Applications to Light Rays. J. Geom. Phys. 15, 159–188

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. Giannoni F, Masiello A. (1998): On a Fermat Principle in General Relativity. A Lusternik-Schnirelmann Theory of Light Rays. Ann. Mat. Pura Appl. 174(4), 161–207

    Article  MathSciNet  MATH  Google Scholar 

  40. Antonacci F., Piccione P. (1996): A Fermat principle on Lorentzian manifolds and applications. Appl. Math. Lett. 9, 91–96

    Article  MathSciNet  MATH  Google Scholar 

  41. Perlick V. (1995): Infinite dimensional Morse theory and Fermat’s principle in general relativity. I. J. Math. Phys. 36, 6915–6928

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. Perlick V. (1990): On Fermat’s principle in general relativity: I. The general case. Class. Quant. Grav. 7, 1319–1331

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. Giannoni F., Masiello A., Piccione P. (1998): A Morse Theory for Light Rays on Stably Causal Lorentzian Manifolds. Ann. Inst. H. Poincaré Physique Théorique 69, 359–412

    MathSciNet  MATH  Google Scholar 

  44. Giannoni F., Masiello A. (1996): On a Fermat principle in General Relativity. A Morse Theory for light rays. Gen. Rel. Grav. 28, 855–897

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. Giannoni F., Masiello A., Piccione P. (1997): A Variational Theory for Light Rays on Stably Causal Lorentzian Manifolds. Existence, Regularity and Multiplicity Results, Commun. Math. Phys 187, 375–415

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. Giannoni F., Masiello A., Piccione P.: The Fermat Principle in General Relativity and Applications, in preparation

    Google Scholar 

  47. Giannoni F., Masiello A., Piccione P. (1999): Convexity and the Finiteness of the Number of Geodesies. Applications to the Multiple-Image Effect. Class. Quant. Grav. 16,731–748

    Article  MathSciNet  ADS  MATH  Google Scholar 

  48. Giannoni F., Masiello A., Piccione P. (1998): A Timelike Extension of Fermat’s Principle in General Relativity and Applications. Cale. Var. P.D.E. 6, 263–283

    Article  MathSciNet  MATH  Google Scholar 

  49. Giannoni F., Masiello A., Piccione P.: A Morse Theory for Massive Particles and Photons. J. Geom. Phys. in press

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Italia

About this paper

Cite this paper

Masiello, A. (2000). Applications of Calculus of Variations to General Relativity. In: Casciaro, B., Fortunato, D., Francaviglia, M., Masiello, A. (eds) Recent Developments in General Relativity. Springer, Milano. https://doi.org/10.1007/978-88-470-2113-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2113-6_14

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0068-1

  • Online ISBN: 978-88-470-2113-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics