Advertisement

The N-Body Problem in Tetrad Gravity: A First Step towards a Unified Description of the Four Interactions

  • L. Lusanna
Conference paper

Abstract

After a review of the canonical reduction to the rest-frame Wigner-covariant instant form of standard theories in Minkowski spacetime, a new formulation of tetrad gravity is introduced. Its canonical reduction, in the presence of N scalar particles, is carried out. A modification of the ADM formulation to solve the deparametrization problem of general relativity (how to recover the rest-frame instant form for G = 0) is presented.

Keywords

Minkowski Spacetime Class Constraint Instant Form Spatial Infinity Lichnerowicz Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lusanna L., Russo S. (1998): Tetrad gravity I): A new formulation. Firenze Univ., preprint, gr-qc/9807073Google Scholar
  2. 2.
    Lusanna L., Russo S. (1998): Tetrad gravity II): Dirac’s observables. Firenze Univ., preprint gr-qc/9807074Google Scholar
  3. 3.
    De Pietri R., Lusanna, L. (1999): Tetrad gravity III): Asymptotic Poincaré charges, the physical Hamiltonian and void spacetimes. Firenze Univ., preprint gr-qc/9909025Google Scholar
  4. 4.
    De Pietri R., Lusanna L., Vallisneri M.: Tetrad gravity IV): The N-body problem, in preparationGoogle Scholar
  5. 5.
    Dirac P.A.M. (1950): Can. J. Math. 2, 129; (1964): Lectures on Quantum Mechanics. Belfer Graduate School of Science, Monographs Series. Yeshiva University, New YorkMathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Lusanna L. (1997): Solving Gauss’ Laws and Searching Dirac Observables for the Four Interactions, in Second Conf. on Constrained Dynamics and Quantum Gravity, S. Margherita Ligure 1996, ed. by V. De Alfaro, J.E. Nelson, G. Bandelloni, A. Blasi, M. Cavaglià, A.T. Filippov, Nucl. Phys. (Proc. Suppl.) B 57, 13, hep-th/9702114; Unified Description and Canonical Reduction to Dirac’s Observables of the Four Interactions, in Int. Workshop, New Non Perturhative Methods and Quantization on the Light Cone, Les Houches School, 1997, ed. by P. Grangé, H.C. Pauli, A. Neveu, S. Pinsky, A. Werner, Springer, Berlin-Heidelberg-New York, hep-th/9705154; (1998): The Pseudoclassical Relativistic Quark Model in the Rest-Frame Wigner-Covariant Gauge, in Euroconference QCD97, Montpellier 1997, ed. by S. Narison, Nucl. Phys. (Proc. Suppl.) B 64, 306Google Scholar
  7. 7.
    Shanmugadhasan S. (1973): J. Math. Phys. 14, 677; Lusanna L. (1993): Int. J. Mod. Phys. A 8, 4193; Chaichian M., Martinez D.L., Lusanna L. (1994): Ann. Phys. (N.Y.) 232, 40; Lusanna L. (1990): Phys. Rep. 185, 1; (1991): Riv. Nuovo Cimento 14 3, 1; (1990): J. Math. Phys. 31, 2126; (1990): J. Math. Phys. 31, 428ADSMATHCrossRefGoogle Scholar
  8. 8.
    Dirac P.A.M. (1955): Can. J. Phys. 33, 650MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9.
    Lusanna L. (1995): Int. J. Mod. Phys. A 10, 3531, 3675MathSciNetADSMATHCrossRefGoogle Scholar
  10. 10.
    Lusanna L., Valtancoli P. (1997): Int. J. Mod. Phys. A 12, 4769, hep-th/9606078; (1997): Int. J. Mod. Phys. A 12, 4797, hep-th/9606079MathSciNetADSMATHCrossRefGoogle Scholar
  11. 11.
    Lusanna L., Valtancoli P. (1998): Int. J. Mod. Phys. A 13, 4605, hep-th/9707072MathSciNetADSMATHCrossRefGoogle Scholar
  12. 12.
    Kuchar K. (1976): J.Math. Phys. 17, 777, 792, 801; (1976): 18, 1589MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Dirac P.A.M. (1949): Rev. Mod. Phys. 21, 392MathSciNetADSMATHCrossRefGoogle Scholar
  14. 14.
    Longhi G., Materassi M. (1999): J. Math. Phys. 40, 480, hep-th/9803128; (1998): Collective and relative variables for a classical Klein-Gordon field. Firenze University preprint, hep-th/9890024, and Int. J. Mod. Phys. A, to appearMathSciNetADSMATHCrossRefGoogle Scholar
  15. 15.
    Lusanna L., Materassi M.: The canonical decomposition in center-of-mass and relative variables of a Klein-Gordon field in the rest-frame Wigner-covariant instant form. Firenze University preprint, hep-th/9904202Google Scholar
  16. 16.
    Lusanna L. (1997): Int. J. Mod. Phys. A 12, 645MathSciNetADSMATHCrossRefGoogle Scholar
  17. 17.
    Alba D., Lusanna L. (1998): Int. J. Mod. Phys. A 13, 2791, hep-th/9705155MathSciNetADSMATHCrossRefGoogle Scholar
  18. 18.
    Alba D., Lusanna L. (1998): Int. J. Mod. Phys. A 13, 3275, hep-th/9705156MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    Bigazzi F., Lusanna L. (1999): Int. J. Mod. Phys. A 14, 1429, hep-th 9807052MathSciNetADSMATHCrossRefGoogle Scholar
  20. 20.
    Bigazzi F., Lusanna L. (1999): Int. J. Mod. Phys. A 14, 1877, hep-th/9807054MathSciNetADSMATHCrossRefGoogle Scholar
  21. 21.
    Lämmerzahl C. (1993): J. Math. Phys. 34, 3918MathSciNetADSMATHCrossRefGoogle Scholar
  22. 22.
    Herbst, I. (1977): Commun. Math. Phys. 53, 285; (1997): 55, 316; Durand B., Durand L. (1983): Phys. Rev. D 28, 396; (1994): erratum, Phys. Rev. D 50, 6642; Basdevant J.J., Boukraa S. (1985): Z. Phys. C 28, 413; Martin A., Roy S.M. (1989): Phys. Lett. B 233, 407; Le Yaouanc A., Oliver L., Raynal J.C. (1995): Ann. Phys. (N. Y.) 239, 243; Lucha W., Schöberl F.F. (1994): Phys. Rev. D 50, 5443MathSciNetADSMATHCrossRefGoogle Scholar
  23. 23.
    Leibbrandt G. (1994): Non-Covariant Gauges. World Scientific, SingaporeCrossRefGoogle Scholar
  24. 24.
    Møller C. (1949): Ann. Inst. H. Poincaré 11, 251; (1957): The Theory of Relativity. Oxford University Press, OxfordGoogle Scholar
  25. 25.
    Veneziano, G. (1990): Quantum Strings and the Constants of Nature, in The Challenging Questions. The Subnuclear Series 27, ed. by A. Zichichi, Plenum Press, New YorkGoogle Scholar
  26. 26.
    Arnowitt R., Deser S., Misner C.W. (1960): Phys. Rev. 117, 1595; (1962): The Dynamics of General Relativity, in Gravitation: an Introduction to Current Research, ed. by L. Witten, Wiley, New York, p. 227MathSciNetADSMATHCrossRefGoogle Scholar
  27. 27.
    Regge T., Teitelboim C. (1974), Ann. Phys. (N.Y.) 88, 286MathSciNetADSMATHCrossRefGoogle Scholar
  28. 28.
    Berg R., Murchadha, Ó. (1987): Ann. Phys. (N.Y.) 174, 463ADSCrossRefGoogle Scholar
  29. 29.
    Andersson L. (1987): J. Geom. Phys. 4, 289MathSciNetADSMATHCrossRefGoogle Scholar
  30. 30.
    Thiemann T. (1995): Class. Quantum Grav. 12, 181MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    A. Ashtekar (1980): Asymptotic Structure of the Gravitational Field at Spatial Infinity, in General Relativity and Gravitation, ed. by A. Held, Vol. 2, Plenum, New York; Ashtekar A., Hansen R.O. (1978): J. Math. Phys. 19, 1542; Ashtekar A., Magnon A. (1984): J. Math. Phys. 25, 2682; Ashtekar A., Romano J.D. (1992): Class. Quantum Grav. 9, 1069Google Scholar
  32. 32.
    Wald R.M. (1984): General Relativity, Chicago University Press, ChicagoMATHCrossRefGoogle Scholar
  33. 33.
    Geroch R. (1968): J. Math. Phys. 9, 1739; (1970): J. Math. Phys. 11, 343MathSciNetADSMATHCrossRefGoogle Scholar
  34. 34.
    Moncrief V. (1975): J. Math. Phys. 16, 1556MathSciNetADSCrossRefGoogle Scholar
  35. 35.
    Choquet-Bruhat Y., York jr. J.W. (1980): The Cauchy Proble, in General Relativity and Gravitation, ed. by A. Held Plenum, Vol. 1, New York, p. 99Google Scholar
  36. 36.
    Bergmann P.G. (1961): Rev. Mod. Phys. 33, 510MathSciNetADSMATHCrossRefGoogle Scholar
  37. 37.
    Weyl H. (1929): Z. Physik 56, 330ADSMATHCrossRefGoogle Scholar
  38. 38.
    Dirac P.A.M. (1962): in Recent Developments in General Relativity, Pergamon Press, Oxford, and PWN-Polish Scientific Publishers, WarsawGoogle Scholar
  39. 39.
    Schwinger J. (1963): Phys. Rev. 130, 1253MathSciNetADSMATHCrossRefGoogle Scholar
  40. 40.
    Kibble T.W.B. (1963): J. Math. Phys. 4, 1433MathSciNetADSMATHCrossRefGoogle Scholar
  41. 41.
    Deser S., Isham, C.J. (1976): Phys. Rev. D 14, 2505; Nelson J.E., Teitelboim C. (1978): Ann. Phys. (N.Y.) 116, 86; Pilati M. (1978): Nucl. Phys. B 132, 138; Castellani L., van Nieuwenhuizen P., Pilati M. (1982): Phys. Rev. D 26, 352; Nelson J.E., Regge T. (1986): Ann. Phys. (N.Y.) 166, 234; (1989): Int. J. Mod. Phys. A 4, 2021MathSciNetADSCrossRefGoogle Scholar
  42. 42.
    Charap J.M., Nelson J.E. (1983): J. Phys. A 16, 1661, 3355; (1986): Class. Quantum Grav. 3, 1061; Charap J.M. (1987): The Constraints in Vierbein General Relativity, in Constraint’s Theory and Relativistic Dynamics, ed. by G. Longhi, L. Lusanna, World Scientific, Singapore, p. 84MathSciNetADSMATHCrossRefGoogle Scholar
  43. 43.
    Maluf J.W. (1991): Class. Quantum Grav. 8, 287MathSciNetADSCrossRefGoogle Scholar
  44. 44.
    Henneaux M. (1978): Gen. Rel. Grav. 9, 1031; Geheniau J., Henneaux M. (1977): Gen. Rel. Grav. 8, 611MathSciNetADSMATHCrossRefGoogle Scholar
  45. 45.
    Henneaux M. (1983): Phys. Rev. D 27, 986MathSciNetADSCrossRefGoogle Scholar
  46. 46.
    Charap J.M., Henneaux M., Nelson J.E. (1988): Class. Quantum Grav. 5, 1405MathSciNetADSCrossRefGoogle Scholar
  47. 47.
    Henneaux M., Nelson J.E., Schonblond C. (1989): Phys. Rev. D 39, 434MathSciNetADSCrossRefGoogle Scholar
  48. 48.
    De Witt B.S. (1967): Phys. Rev. 162, 1195; (1967): The Dynamical Theory of Groups and Fields, Gordon and Breach, New York; (1964): Dynamical Theory of Groups and Fields, in Relativity, Groups and Topology, Les Houches, 1963, ed. by C. De Witt, B.S. De Witt, Gordon and Breach, London, p. 587; (1984): The Spacetime Approach to Quantum Field Theory, in Relativity, Groups and Topology H, Les Houches 1983, ed. by B.S. DeWitt, R. Stora, North-Holland, Amsterdam, p. 381ADSCrossRefGoogle Scholar
  49. 49.
    De Witt B.S. (1967): Phys. Rev. 160, 1113ADSCrossRefGoogle Scholar
  50. 50.
    Isham C.J., Kuchar K. (1984): Ann. Phys. (N.Y.) 164, 288 and 316; Kuchar K. (1986): Found. Phys. 16, 193MathSciNetADSCrossRefGoogle Scholar
  51. 51.
    Lichnerowicz A. (1944): J. Math. Pure Appl. 23, 37; Choquet-Bruhat Y. (1948): C. R. Acad. Sci. Paris 226, 1071; (1956): J. Rat. Mech. Anal. 5, 951; (1962): The Cauchy Problem, in Gravitation: An Introduction to Current Research, ed. by L. Witten, Wiley, New York, p. 130MathSciNetMATHGoogle Scholar
  52. 52.
    York jr J.W. (1971): Phys. Rev. Lett. 26, 1656; (1972): 28, 1082; (1972): J. Math. Phys. 13, 125; (1972): 14, 456; (1974): Ann. Ins. H. Poincaré 21, 318; O’Murchadha N., York Jr. J.W. (1972): J. Math. Phys. 14, 1551; (1974): Phys. Rev. D 10, 428MathSciNetADSCrossRefGoogle Scholar
  53. 53.
    York Jr. J.W. (1979): Kinematics and Dynamics of General Relativity, in Sources of Gravitational Radiation, Battelle-Seattle Workshop, 1978, ed. by L.L. Smarr, Cambridge University Press, Cambridge, p. 83Google Scholar
  54. 54.
    Ciufolini I., Wheeler J.A. (1995): Gravitation and Inertia, Princeton University Press, PrincetonMATHGoogle Scholar
  55. 55.
    Qadir A., Wheeler J.A. (1985): York’s Cosmic Time Versus Proper Time, in From SU(3) to Gravity, Y. Ne’eman’s Festschrift, ed. by E. Gotsma, G. Tauber, Cambridge University Press, Cambridge, p. 128Google Scholar
  56. 56.
    Dirac P.A.M. (1951): Canad. J. Math. 3, 1MathSciNetMATHCrossRefGoogle Scholar
  57. 57.
    Christodoulou D., Klainerman S. (1993): The Global Nonlinear Stability of the Minkowski Space, Princeton University Press, PrincetonMATHGoogle Scholar
  58. 58.
    Nester J.M. (1988): Class.Quantum Grav. 5, 1003; Cheng W.H., Chern D.C., Nester J.M. (1988): Phys. Rev. D 38, 2656; Nester J.M. (1980): J. Math. Phys. 30, 624; (1992): 33, 910; J.M. Nester (1989): Int. J. Mod. Phys. A 4, 1755; Nester J.M. (1991): Class. Quantum Grav. 8, L19; Dimakis A., Müller-Hoissen F. (1989): Phys. Lett. A 142, 73MathSciNetADSCrossRefGoogle Scholar
  59. 59.
    Ashtekar A., Horowitz G.T. (1984): J. Math. Phys. 25, 1473MathSciNetADSMATHCrossRefGoogle Scholar
  60. 60.
    Witten E. (1981): Commun. Math. Phys. 80, 381MathSciNetADSCrossRefGoogle Scholar
  61. 61.
    Sen A. (1981): J. Math. Phys. 22, 1781; (1982): Phys. Lett. B 119, 89MathSciNetADSCrossRefGoogle Scholar
  62. 62.
    Frauendiener J. (1991): Class. Quantum Grav. 8, 1881MathSciNetADSMATHCrossRefGoogle Scholar
  63. 63.
    Isham C.J. (1993): Canonical Quantum Gravity and the Problem of Time, in Integrable Systems, Quantum Groups and Quantum Field Theories, Salamanca, 1993, ed. by L.A. Ibort, M.A. Rodriguez, Kluwer, London, p. 21; (1991): Conceptual and Geometrical Problems in Quantum Gravity, in Recent Aspects of Quantum Fields, Schladming, 1991, ed. by H. Mitter, H. Gausterer, Springer, Berlin, p. 58; (1994): Prima Facie Questions in Quantum Gravity; Canonical Quantum Gravity and the Question of Time, in Canonical Gravity: From Classical to Quantum, ed. by J. Ehlers, H. Friedrich, Springer, Berlin, p. 1Google Scholar
  64. 64.
    Kuchar K. (1992): Time and Interpretations of Quantum Gravity, in Proc. 4th Canadian Conf. on General Relativity and Relativistic Astrophysics, ed. by G. Kunstatter, D. Vincent, J. Williams, World Scientific, Singapore, p. 211Google Scholar
  65. 65.
    Stachel J. (1987): The Meaning of General Covariance, in General Relativity and Gravitation, GR11, Stockholm, 1986, ed. by M.A.H. Mac Callum, Cambridge University Press, Cambridge; (1993): The Meaning of General Covariance, in Philosophical Problems of the Internal and External Worlds, Essays in the Philosophy of A. Grünbaum, ed. by J. Earman, A.I. Janis, G.J. Massey, N. Rescher, Pittsburgh University Press, PittsburghGoogle Scholar
  66. 66.
    Rovelli C. (1991): Class. Quantum Grav. 8, 297, 317MathSciNetADSCrossRefGoogle Scholar
  67. 67.
    Teitelboim C. (1980): The Hamiltonian Structure of Space-Time, in General Relativity and Gravitation, ed. by A. Held, Vol. I, Plenum, New York; Hojman, A.S., Kuchar K., Teitelboim C. (1971): Ann. Phys. (N.Y.) 96, 88Google Scholar
  68. 68.
    Havas P. (1987): Gen. Rel. Grav. 19, 435; Anderson R., Vetharaniam I., Stedman G.E. (1998): Phys. Rep. 295, 93MathSciNetADSMATHCrossRefGoogle Scholar
  69. 69.
    Landau L., Lifschitz E. (1951): The Classical Theory of Fields, Addison-Wesley, CambridgeMATHGoogle Scholar
  70. 70.
    Ellis G.F.R., Matravers D.R. (1995): Gen. Rel. Grav. 27, 777MathSciNetADSMATHCrossRefGoogle Scholar
  71. 71.
    Zalaletdinov R., Tavakol R., Ellis G.F.R. (1996): Gen. Rel. Grav. 28, 1251MathSciNetADSMATHCrossRefGoogle Scholar
  72. 72.
    Einstein A., Hoffman B., Infeld L. (1938): Ann. Math. 39, 66; Einstein A., Infeld L. (1940): Ann. Math. 41, 797; (1949): Canad. J. Math. 1, 209; Infeld L. (1957): Rev. Mod. Phys. 29, 398ADSGoogle Scholar
  73. 73.
    Lorentz H.A., Droste L. (1917): Amst. Akad. Versl. 26, 392; Eddington A., Clarke G.L. (1938): Proc. Roy. Soc. London A 166, 465; Fock V. (1939): J. Phys. (U.S.S.R.) 1, 81; Papapetrou A. (1951): Proc. Phys. Soc.(London) 64, 57MATHGoogle Scholar

Copyright information

© Springer-Verlag Italia 2000

Authors and Affiliations

  • L. Lusanna

There are no affiliations available

Personalised recommendations