The Entropy of Black Holes via Noether’s Theorem

  • L. Fatibene
  • M. Ferraris
  • M. Francaviglia
  • M. Raiteri
Conference paper


We generalise some properties of Noether charges that have been related recently to the entropy of black holes. We define the variation of the entropy of black holes starting from suitable variations of superpotentials. Superpotentials are associated to Noether currents and are properly defined in any gauge-natural field theory. In this covariant framework the entropy is defined in such a way that it automatically satisfies the first principle of thermodynamics. We consider the BTZ black hole solution as a test model. Entropy is explicitly computed both by our method and by the prescription given by Wald in order to compare results.


Black Hole Gauge Theory Vector Field Black Hole Solution Infinitesimal Generator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Iyer V., Wald, R. (1994): Phys. Rev. D 50, 846MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    Wald R.M. (1993): J. Math. Phys. 31, 2378MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    Kay B.S., Wald R.M. (1991): Physics Reports 207(2), 49MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Racz I., Wald R.M. (1992): Class. Quantum Grav. 9, 2643MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    Carlip S., Gegenberg J. (1991): Phys. Rev. D 2(44), 424; Bañados M., Teitelboim C., Zanelli J. (1992): Phys. Rev. Lett. 69, 1849; Bañados M., Hnaux M., Teitelboim C., Zanelli J. (1993): Phys. Rev. D 48 (4), 1506; Cangemi D., Leblanc M., Mann R.B. (1993): Phys. Rev. D 48, 3606; Brown J.D., Creighton J., Mann R.B. (1994): Phys. Rev. D 50, 6394; Carlip S., Teitelboim C. (1995): Phys. Rev. D 501 (2), 622; Carlip S., Gegenberg J., Mann R.B. (1995): Phys. Rev. D 51 (12), 6854MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Fatibene L., Ferraris M., Francaviglia M., Raiteri M. (1999): Ann. Phys. 275, 27. hep-th/9810039; Fatibene L., Ferraris M., Francaviglia M., Raiteri M. (1999): Phys. Rev. D 60, 124012; Fatibene L., Ferraris M., Francaviglia M., Raiteri M. (1999): Phys. Rev. D 60, 124013MathSciNetADSMATHCrossRefGoogle Scholar
  7. 7.
    Hawking S.W., Hunter C.J. (1999): Phys. Rev. D 59, 044025; Hunter C.J. (1999): Phys. Rev. D 59, 024009; Hawking S.W., Hunter C.J., Page D.N. (1999): Phys. Rev. D 59, 044033MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Kolář I., Michor P.W., Slovák J. (1993): Natural Operations in Differential Geometry. Springer, New York; Saunders D.J. (1989): The Geometry of Jet Bundles. Cambridge University Press, Cambridge; Trautman A. (1962): Conservation Laws in General Relativity, in Gravitation: An Introduction to Current Research, ed. by L. Witten, Wiley, New York, pp. 168 ff.MATHGoogle Scholar
  9. 9.
    Ferraris M., Francaviglia M. (1991): The Lagrangian Approach to Conserved Quantities, in Mechanics, Analysis and Geometry: 200 Years after Lagrange, ed. by M. Francaviglia, Elsevier, Amsterdam, pp. 451 ff.Google Scholar
  10. 10.
    Trautman A. (1967): Comm. Math. Phys. 6, 248; Kolář I. (1984): J. Geom. Phys., 1, 127MathSciNetADSMATHCrossRefGoogle Scholar
  11. 11.
    Fatibene L., Francaviglia M. (1998): Deformations of Spin Structures and Gravity, in Gauge Theories of Gravitation. (Jadwisin, Sept. 1997), Acta Physica Polonica B 29 (4), 915; Fatibene L., Ferraris M., Francaviglia M., Godina M. (1998): Gen. Rel. Grav. 30 (9), 1371Google Scholar
  12. 12.
    Ferraris M., Francaviglia M., Robutti O. (1987): On the notion of energy and the existence of superpotentials in gravitational theories, in Géométrie et Physique, Proceedings of the Journées Relativistes 1985, (Marseille, 1985), ed. by Y. Choquet-Bruhat, B. Coll, R. Kerner, A. Lichnerowicz, Hermann, Paris, pp. 112 ff.Google Scholar
  13. 13.
    Fatibene L., Gauge-natural formalism for classical field theories. Ph.D. Thesis Univ. di Torino (to appear)Google Scholar
  14. 14.
    Komar A. (1959): Phys. Rev. 113, 934MathSciNetADSMATHCrossRefGoogle Scholar
  15. 15.
    Katz J. (1985): Class. Quantum Grav. 2, 423ADSCrossRefGoogle Scholar
  16. 16.
    Ferraris M., Francaviglia M. (1990): Gen. Rel. Grav. 22(9), 965MathSciNetADSMATHCrossRefGoogle Scholar
  17. 17.
    Chu K. Farell C., Fee G. McLenaghan R. (1997): Fields Institute Comm. 15, 195MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Italia 2000

Authors and Affiliations

  • L. Fatibene
  • M. Ferraris
  • M. Francaviglia
  • M. Raiteri

There are no affiliations available

Personalised recommendations