Molecular Modelling Analysis of the Haemoglobins of the Antarctic Bird Catharacta maccormicki: the Hypothesis of a Second Phosphate Binding Site

  • A. Riccio
  • M. Tamburrini
  • B. Giardina
  • G. Di Prisco


Antarctic organisms are exposed to very low temperatures. Thus, in order to face extreme life conditions, suitable mechanisms of cold adaptation have been developed, involving physiological and biochemical processes [[1]].


Oxygen Affinity Organic Phosphate Emperor Penguin Camelus Dromedarius South Polar Skua 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    di Prisco G (1997) Physiological and biochemical adaptations in fish to a cold marine environment. In: Battaglia B, Valencia J, Walton DWH (eds) Antarctic communities: species, structure and survival. Proc SCAR 6th Biol Symp, Venice. Cambridge University Press, Cambridge, pp 251–260Google Scholar
  2. 2.
    Brix O, Bardgard A, Mathisen S, El-Sherbini S, Condó SG, Giardina B (1989) Arctic life adaptation. I. The function of musk ox (Ovibos muschatos) haemoglobin. Comp Biochem Physiol 94B:135–138Google Scholar
  3. 3.
    Brix O, Condó SG, Bardgard A, Tavazzi B, Giardina B (1990) Temperature modulation of oxygen transport in a diving mammal (Balaenoptera acutorostrata). Biochem J271:509–513Google Scholar
  4. 4.
    Giardina B, Brix O, Nuutinen M, El-Sherbini S, Bardgard A, Lazzarino G, Condó SG (1989) Arctic adaptation in reindeer. The energy saving of haemoglobin. FEBS Lett 247:135–138PubMedCrossRefGoogle Scholar
  5. 5.
    Giardina B, Condó SG, Petruzzelli R, Bardgard A, Brix O (1990) Thermodynamics of oxygen binding to arctic haemoglobins. The case of reindeer. Biophys Chem 37:281–286PubMedCrossRefGoogle Scholar
  6. 6.
    Giardina B, Condó SG, Brix O (1992) The interplay of temperature and protons in the modulation of oxygen binding to squid blood. Biochem J 281:725–728PubMedGoogle Scholar
  7. 7.
    Giardina B, Galtieri A, Lania A, Ascenzi P, Desideri A, Cerroni L, Condó SG (1992) Reduced sensitivity of oxygen transport to allosteric effectors and temperature in loggerhead sea turtle haemoglobin: functional and spectroscopic study. Biochim Biophys Acta 1159:129–133PubMedCrossRefGoogle Scholar
  8. 8.
    Giardina B, Ascenzi P, Clementi ME, De Sanctis G, Rizzi M, Coletta M (1996) Functional modulation by lactate of myoglobin. A monomeric allosteric hemoprotein. J Biol Chem 271:16999–17001PubMedCrossRefGoogle Scholar
  9. 9.
    di Prisco G (1998) Molecular adaptations of Antarctic fish hemoglobins. In: di Prisco G, Pisano E, Clarke A (eds) Fishes of Antarctica. A biological overview. Springer-Verlag Italia, Milano, pp 339–353Google Scholar
  10. 10.
    di Prisco G, Giardina B (1996) Temperature adaptation: molecular aspects. In: Johnston IA, Bennett AF (eds) Animals and temperature. Phenotypic and evolutionary adaptation. Soc Exptl Biol, Seminar Series 59, Cambridge, Cambridge University Press, pp 23–51CrossRefGoogle Scholar
  11. 11.
    di Prisco G, Condó SG, Tamburrini M, Giardina B (1991) Oxygen transport in extreme environments. Trends Biochem Sci 16:471–474PubMedCrossRefGoogle Scholar
  12. 12.
    di Prisco G, D’Avino R, Tamburrini M (1999) Structure and function of hemoglobins from Antarctic organisms: the search for correlations with adaptive evolution. In: Margesin R, Schinner F (eds) Cold-adapted organisms. Ecology, physiology, enzymology and molecular biology. Springer, Berlin Heidelberg New York, pp 239253Google Scholar
  13. 13.
    Tamburrini M, Condó SG, di Prisco G, Giardina B (1994) Adaptation to extreme environments: structure-function relationships in Emperor penguin haemoglobin. J Mol Biol 237:615–621PubMedCrossRefGoogle Scholar
  14. 14.
    Tamburrini M, Romano M, Giardina B, di Prisco G (1999) The myoglobin of Emperor penguin (Aptenodytes forsteri): amino acid sequence and functional adaptation to extreme conditions. Comp Biochem Physiol 122B:235–240Google Scholar
  15. 15.
    Watson GE (1975) Birds of the Antarctic and Sub-Antarctic. Antarctic Research Series. William Byrd, RichmondGoogle Scholar
  16. 16.
    Giardina B, Corda M, Pellegrini MG, Sanna MT, Brix O, Clementi ME, Conde, SG (1990) Flight and heath dissipation in birds. A possible molecular mechanism. FEBS Lett 270:173–176PubMedCrossRefGoogle Scholar
  17. 17.
    Kuwajima T, Asai H (1975) Synthesis of fluorescent organic phosphates and their equilibrium binding to bovine oxyhemoglobin. Biochemistry 14:492–497PubMedCrossRefGoogle Scholar
  18. 18.
    Horiuchi K, Asai H (1983) Binding of fl-naphthyl triphosphate to human adult hemoglobin accompanying deoxygenation, investigated by simultaneous measurements of fluorescence, absorbance and partial pressure of oxygen. Eur J Biochem 131:613–618PubMedCrossRefGoogle Scholar
  19. 19.
    Hedlund B, Danielson C, Lovrien R (1972) Equilibria of organic phosphates with horse oxyhemoglobin. Biochemistry 11:4660–4668PubMedCrossRefGoogle Scholar
  20. Zuiderweg ERP, Hamers LF, Rollema HS, de Bruin SH, Hilbers CW (1981) 31P NMR study of the kinetics of binding of myo-inositol hexakisphosphate to human hemoglobin. Eur J Biochem 118:95–104PubMedCrossRefGoogle Scholar
  21. 21.
    Coletta M, Ascenzi P, Santucci R, Bertollini A, Amiconi G (1993) Interaction of inositol hexakisphosphate with liganded ferrous human hemoglobin. Direct evidence for two functionally operative binding sites. Biochim Biophys Acta 1162:309–314PubMedCrossRefGoogle Scholar
  22. 22.
    Ascenzi P, Amiconi G, Rossi E, Segre AL (1989) Binding of inositol hexakisphosphate to the oxygenated derivative of dromedary (Camelus dromedarius) and human hemoglobin: 31p-NMR study. J Inorg Biochem 35(4):247–253PubMedCrossRefGoogle Scholar
  23. 23.
    Amiconi G, Bertollini A, Bellelli A, Coletta M, Conde, SG, Brunori M (1985) Evidence for two oxygen-linked binding sites for polyanions in dromedary hemoglobin. Eur J Biochem 150:387–393PubMedCrossRefGoogle Scholar
  24. 24.
    Desideri A, Ascenzi P, Chiancone E, Amiconi G (1987) Effect of inositol hexakisphosphate on the EPR properties of the nitric oxide derivative of ferrous dromedary (Camelus dromedarius) hemoglobin. Evidence for two polyanion binding sites. J Inorg Biochem 29(2):131–135PubMedCrossRefGoogle Scholar
  25. 25.
    Coletta M, Conde, SG, Scatena R, Clementi ME, Baroni S, Sletten SN, Brix O, Giardina B (1994) Synergistic modulation by chloride and organic phosphates of hemoglobin from bear (Ursus arctos). J Mol Biol 236:1401–1406CrossRefGoogle Scholar
  26. 26.
    Brygier J, Paul C (1976) Oxygen equilibrium of chicken haemoglobin in the presence of organic phosphates. Biochemie 58:755–756CrossRefGoogle Scholar
  27. 27.
    Vandecasserie C, Fraboni A, Schnek AG, Leonis J (1976) Oxygen affinity of some avian haemoglobins in presence of various phosphorilated cofactors. Colloque sur l’hemoglobine. Le Touquet-Paris-Plage, p 34Google Scholar
  28. 28.
    Lutz PL (1980) On the oxygen affinity of bird blood. Am Zool 20:187–198Google Scholar
  29. 29.
    Giardina B, Corda M, Pellegrini MG, Conde, SG, Brunori M (1985) Functional properties of the haemoglobin system of two diving birds (Podiceps nigricollis and Phalacrocorax carbo sinensis). Mol Physiol 7:281–292Google Scholar
  30. 30.
    Fermi G, Perutz MF, Shaanan B, Fourme R (1984) The crystal structure of human deoxyhaemoglobin at 1.74 A resolution. J Mol Biol 175:159–174PubMedCrossRefGoogle Scholar
  31. 31.
    Arpone A, Perutz MF (1974) Structure of inositol hexaphosphate-human deoxyhemoglobin complex. Nature 249:34–36CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2000

Authors and Affiliations

  • A. Riccio
    • 1
  • M. Tamburrini
    • 1
  • B. Giardina
    • 2
  • G. Di Prisco
    • 1
  1. 1.Institute of Protein Biochemistry and EnzymologyCNRNaplesItaly
  2. 2.Institute of Chemistry and Clinical Chemistry, Faculty of MedicineCatholic University “Sacro Cuore”RomeItaly

Personalised recommendations