Skip to main content

Molecular Modelling Analysis of the Haemoglobins of the Antarctic Bird Catharacta maccormicki: the Hypothesis of a Second Phosphate Binding Site

  • Conference paper

Abstract

Antarctic organisms are exposed to very low temperatures. Thus, in order to face extreme life conditions, suitable mechanisms of cold adaptation have been developed, involving physiological and biochemical processes [[1]].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. di Prisco G (1997) Physiological and biochemical adaptations in fish to a cold marine environment. In: Battaglia B, Valencia J, Walton DWH (eds) Antarctic communities: species, structure and survival. Proc SCAR 6th Biol Symp, Venice. Cambridge University Press, Cambridge, pp 251–260

    Google Scholar 

  2. Brix O, Bardgard A, Mathisen S, El-Sherbini S, Condó SG, Giardina B (1989) Arctic life adaptation. I. The function of musk ox (Ovibos muschatos) haemoglobin. Comp Biochem Physiol 94B:135–138

    CAS  Google Scholar 

  3. Brix O, Condó SG, Bardgard A, Tavazzi B, Giardina B (1990) Temperature modulation of oxygen transport in a diving mammal (Balaenoptera acutorostrata). Biochem J271:509–513

    Google Scholar 

  4. Giardina B, Brix O, Nuutinen M, El-Sherbini S, Bardgard A, Lazzarino G, Condó SG (1989) Arctic adaptation in reindeer. The energy saving of haemoglobin. FEBS Lett 247:135–138

    Article  PubMed  CAS  Google Scholar 

  5. Giardina B, Condó SG, Petruzzelli R, Bardgard A, Brix O (1990) Thermodynamics of oxygen binding to arctic haemoglobins. The case of reindeer. Biophys Chem 37:281–286

    Article  PubMed  CAS  Google Scholar 

  6. Giardina B, Condó SG, Brix O (1992) The interplay of temperature and protons in the modulation of oxygen binding to squid blood. Biochem J 281:725–728

    PubMed  CAS  Google Scholar 

  7. Giardina B, Galtieri A, Lania A, Ascenzi P, Desideri A, Cerroni L, Condó SG (1992) Reduced sensitivity of oxygen transport to allosteric effectors and temperature in loggerhead sea turtle haemoglobin: functional and spectroscopic study. Biochim Biophys Acta 1159:129–133

    Article  PubMed  CAS  Google Scholar 

  8. Giardina B, Ascenzi P, Clementi ME, De Sanctis G, Rizzi M, Coletta M (1996) Functional modulation by lactate of myoglobin. A monomeric allosteric hemoprotein. J Biol Chem 271:16999–17001

    Article  PubMed  CAS  Google Scholar 

  9. di Prisco G (1998) Molecular adaptations of Antarctic fish hemoglobins. In: di Prisco G, Pisano E, Clarke A (eds) Fishes of Antarctica. A biological overview. Springer-Verlag Italia, Milano, pp 339–353

    Google Scholar 

  10. di Prisco G, Giardina B (1996) Temperature adaptation: molecular aspects. In: Johnston IA, Bennett AF (eds) Animals and temperature. Phenotypic and evolutionary adaptation. Soc Exptl Biol, Seminar Series 59, Cambridge, Cambridge University Press, pp 23–51

    Chapter  Google Scholar 

  11. di Prisco G, Condó SG, Tamburrini M, Giardina B (1991) Oxygen transport in extreme environments. Trends Biochem Sci 16:471–474

    Article  PubMed  Google Scholar 

  12. di Prisco G, D’Avino R, Tamburrini M (1999) Structure and function of hemoglobins from Antarctic organisms: the search for correlations with adaptive evolution. In: Margesin R, Schinner F (eds) Cold-adapted organisms. Ecology, physiology, enzymology and molecular biology. Springer, Berlin Heidelberg New York, pp 239253

    Google Scholar 

  13. Tamburrini M, Condó SG, di Prisco G, Giardina B (1994) Adaptation to extreme environments: structure-function relationships in Emperor penguin haemoglobin. J Mol Biol 237:615–621

    Article  PubMed  CAS  Google Scholar 

  14. Tamburrini M, Romano M, Giardina B, di Prisco G (1999) The myoglobin of Emperor penguin (Aptenodytes forsteri): amino acid sequence and functional adaptation to extreme conditions. Comp Biochem Physiol 122B:235–240

    CAS  Google Scholar 

  15. Watson GE (1975) Birds of the Antarctic and Sub-Antarctic. Antarctic Research Series. William Byrd, Richmond

    Google Scholar 

  16. Giardina B, Corda M, Pellegrini MG, Sanna MT, Brix O, Clementi ME, Conde, SG (1990) Flight and heath dissipation in birds. A possible molecular mechanism. FEBS Lett 270:173–176

    Article  PubMed  CAS  Google Scholar 

  17. Kuwajima T, Asai H (1975) Synthesis of fluorescent organic phosphates and their equilibrium binding to bovine oxyhemoglobin. Biochemistry 14:492–497

    Article  PubMed  CAS  Google Scholar 

  18. Horiuchi K, Asai H (1983) Binding of fl-naphthyl triphosphate to human adult hemoglobin accompanying deoxygenation, investigated by simultaneous measurements of fluorescence, absorbance and partial pressure of oxygen. Eur J Biochem 131:613–618

    Article  PubMed  CAS  Google Scholar 

  19. Hedlund B, Danielson C, Lovrien R (1972) Equilibria of organic phosphates with horse oxyhemoglobin. Biochemistry 11:4660–4668

    Article  PubMed  CAS  Google Scholar 

  20. Zuiderweg ERP, Hamers LF, Rollema HS, de Bruin SH, Hilbers CW (1981) 31P NMR study of the kinetics of binding of myo-inositol hexakisphosphate to human hemoglobin. Eur J Biochem 118:95–104

    Article  PubMed  Google Scholar 

  21. Coletta M, Ascenzi P, Santucci R, Bertollini A, Amiconi G (1993) Interaction of inositol hexakisphosphate with liganded ferrous human hemoglobin. Direct evidence for two functionally operative binding sites. Biochim Biophys Acta 1162:309–314

    Article  PubMed  CAS  Google Scholar 

  22. Ascenzi P, Amiconi G, Rossi E, Segre AL (1989) Binding of inositol hexakisphosphate to the oxygenated derivative of dromedary (Camelus dromedarius) and human hemoglobin: 31p-NMR study. J Inorg Biochem 35(4):247–253

    Article  PubMed  CAS  Google Scholar 

  23. Amiconi G, Bertollini A, Bellelli A, Coletta M, Conde, SG, Brunori M (1985) Evidence for two oxygen-linked binding sites for polyanions in dromedary hemoglobin. Eur J Biochem 150:387–393

    Article  PubMed  CAS  Google Scholar 

  24. Desideri A, Ascenzi P, Chiancone E, Amiconi G (1987) Effect of inositol hexakisphosphate on the EPR properties of the nitric oxide derivative of ferrous dromedary (Camelus dromedarius) hemoglobin. Evidence for two polyanion binding sites. J Inorg Biochem 29(2):131–135

    Article  PubMed  CAS  Google Scholar 

  25. Coletta M, Conde, SG, Scatena R, Clementi ME, Baroni S, Sletten SN, Brix O, Giardina B (1994) Synergistic modulation by chloride and organic phosphates of hemoglobin from bear (Ursus arctos). J Mol Biol 236:1401–1406

    Article  CAS  Google Scholar 

  26. Brygier J, Paul C (1976) Oxygen equilibrium of chicken haemoglobin in the presence of organic phosphates. Biochemie 58:755–756

    Article  CAS  Google Scholar 

  27. Vandecasserie C, Fraboni A, Schnek AG, Leonis J (1976) Oxygen affinity of some avian haemoglobins in presence of various phosphorilated cofactors. Colloque sur l’hemoglobine. Le Touquet-Paris-Plage, p 34

    Google Scholar 

  28. Lutz PL (1980) On the oxygen affinity of bird blood. Am Zool 20:187–198

    CAS  Google Scholar 

  29. Giardina B, Corda M, Pellegrini MG, Conde, SG, Brunori M (1985) Functional properties of the haemoglobin system of two diving birds (Podiceps nigricollis and Phalacrocorax carbo sinensis). Mol Physiol 7:281–292

    CAS  Google Scholar 

  30. Fermi G, Perutz MF, Shaanan B, Fourme R (1984) The crystal structure of human deoxyhaemoglobin at 1.74 A resolution. J Mol Biol 175:159–174

    Article  PubMed  CAS  Google Scholar 

  31. Arpone A, Perutz MF (1974) Structure of inositol hexaphosphate-human deoxyhemoglobin complex. Nature 249:34–36

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Italia

About this paper

Cite this paper

Riccio, A., Tamburrini, M., Giardina, B., Di Prisco, G. (2000). Molecular Modelling Analysis of the Haemoglobins of the Antarctic Bird Catharacta maccormicki: the Hypothesis of a Second Phosphate Binding Site. In: Hemoglobin Function in Vertebrates. Springer, Milano. https://doi.org/10.1007/978-88-470-2111-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2111-2_8

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2160-0

  • Online ISBN: 978-88-470-2111-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics