Functional Properties of the Cathodic Hemoglobin Component from Two Species of Anguilliformes

  • A. Olianas
  • M. T. Sanna
  • A. Fais
  • A. Pisano
  • S. Salvadori
  • A. M. Deiana
  • M. Corda
  • M. Pellegrini
Conference paper


Comparative studies of haemoglobin (Hb) function are of special interest since they may lead to an understanding of those changes which, in the course of evolution, have developed in different organisms to meet specific physiological requirements.


High Performance Liquid Chromatography Oxygen Affinity Organic Phosphate Globin Chain Additional Hydrogen Bond 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    di Prisco G, Tamburrini M (1992) The hemoglobins of marine and freshwater fish: the search for correlations with physiological adaptation. Comp Biochem Physiol 102B:661–671Google Scholar
  2. 2.
    Weber RE (1982) Intraspecific adaptation of hemoglobin function in fish to environmental oxygen availability. In: Addink ADF, Spronk N (eds) Exogenus and eso-genus influences on metabolic and neural control, vol 1. Pergamon, Oxford, pp 87–102Google Scholar
  3. 3.
    Tan AL, De Young A, Noble RW (1972) The pH dependence of the affinity, kinetics, and cooperativity of ligand binding to carp hemoglobin, Cyprinus carpio. J Biol Chem 247:2493–2498PubMedGoogle Scholar
  4. 4.
    Binotti I, Giovenco S, Giardina B, Antonini E, Brunori M, Wyman J (1971) Studies on the functional properties of fish hemoglobins. The oxygen equilibrium of the isolated hemoglobin components from trout blood. Arch Biochem Biophys 142:274–280.PubMedCrossRefGoogle Scholar
  5. 5.
    Brunori M, Bonaventura J, Bonaventura C, Giardina B, Bossa F, Antonini E (1973) Hemoglobins from trout: structural and functional properties. Mol Cell Biochem 1:189–196PubMedCrossRefGoogle Scholar
  6. 6.
    Weber RE, Lykkeboe G, Johansen K (1976) Physiological properties of eel hemoglobin: hypoxic acclimation, phosphate effects and multiplicity. J Exp Biol 64:75–88PubMedGoogle Scholar
  7. 7.
    Weber RE (1990) Functional significance and structural basis of multiple hemoglobins with special reference to ectothermic vertebrates. In: Truchot JP, Lahlou B (eds) Animal nutrition and transport processes. 2. Transport, respiration and excretion: comparative and environmental aspects. Karger, Basel, pp 58–75 (Comparative physiology, vol 6)Google Scholar
  8. 8.
    Ito N, Komiyama NH, Fermi G (1995) Structure of deoxyhaemoglobin of Antarctic fish Pagothenia bernacchi with an analysis of the structural basis of the Root effect by comparison of the liganded and unliganded haemoglobin structures. J Mol Biol 250:648–658PubMedCrossRefGoogle Scholar
  9. 9.
    Tame JRH, Wilson JC, Weber RE (1996) The crystal structure of trout Hb I in the deoxy and carbonmonoxy forms. J Mol Biol 259:749–760PubMedCrossRefGoogle Scholar
  10. 10.
    Perutz MF,Fermi G, Luisi B, Shaanan B, Liddington R (1987) Stereochemistry of cooperativity mechanism in haemoglobin. Acc Chem Res 20:309–321CrossRefGoogle Scholar
  11. 11.
    Mazzarella 1, D’Avino R, di Prisco G, Savino C, Vitagliano L, Moody PCE, Zagari A (1999) Crystal structure of Trematomus newnesi haemoglobin re-opens the Root effect question. J Mol Biol 287:897–906CrossRefGoogle Scholar
  12. 12.
    Manca L, De Muro P, Masala B (1988) Hb G-Philadelphia, or [a68(E17)Asn¡ª>Lys], in North Sardinia: detection by isoeletric focusing and HPLC of tryptic peptides. Clin Chim Acta 177:231–238PubMedCrossRefGoogle Scholar
  13. 13.
    Masala B, Manca L (1991) Detection of the common Hb F Sardinia [Ay(E19)Ile >Tyr] variant by isoelectric focusing in normal newborns and in adults affected by elevated fetal hemoglobin syndromes. Clin Chim Acta 198:195–202PubMedCrossRefGoogle Scholar
  14. 14.
    Efremov GD, Markovska B, Stojanovski N, Petkov G, Nikolov N, Huisman THJ (1981) The use of globin chain electrophoresis in polyacrylamide gels for the quantitation of Gy and A1 ratio in fetal hemoglobin. Hemoglobin 5: 637–651PubMedCrossRefGoogle Scholar
  15. 15.
    Manca L, Formato M, Demuro P, Gallisai D, Orzalesi M, Masala B (1986) The y, globin chain heterogeneity of the Sardinian newborn baby. Hemoglobin 10:519–528PubMedCrossRefGoogle Scholar
  16. 16.
    Braend M, Nesse LL, Efremov GD (1987) Expression and genetics of caprine haemoglobins. Animal Genetics. 18:223–231PubMedCrossRefGoogle Scholar
  17. 17.
    Giardina B, Amiconi G (1981) Measurament of binding of gaseous and nongaseous ligands to hemoglobin by conventional spectrophotometric procedures. Methods Enzymol 76:417–427PubMedCrossRefGoogle Scholar
  18. 18.
    Pellegrini M, Giardina B, Olianas A, Sanna MT, Deiana AM, Salvadori S, di Prisco G, Tamburrini M, Corda M (1995) Structure/function relationships in the hemoglobin components from moray (Muraena helena). Eur J Biochem 234:431–436PubMedCrossRefGoogle Scholar
  19. 19.
    Rizzotti M, Pagni S, Bentivegna F (1990) Conservation of peculiar structural properties by the hemoglobins of anguilloid eels (Teleostei). Z Zool Syst Evolut Forsch 28:12–19CrossRefGoogle Scholar
  20. 20.
    Weber RE (1992) Use of ionic and zwitterionic (Tris/BisTris and HEPES) buffers in studies on hemoglobin function. J Appl Physiol 72:1611–1615PubMedGoogle Scholar
  21. 21.
    Hashimoto K, Yamaguchi Y, Matsuura F, (1960) Comparative studies on two hemoglobins of salmon. IV. Oxygen dissociation curve. Bull Jpn Soc Scient Fish 26:827–834CrossRefGoogle Scholar
  22. 22.
    Weber RE, Lykkeboe G, Johansen K, (1975) Biochemical aspects of the adaptation of hemoglobin-oxygen affinity of eels to hypoxia. Life Sci 17:1345–1350PubMedCrossRefGoogle Scholar
  23. 23.
    Brunori M (1975) Molecular adaptations to physiological requirements: the hemoglobin system of trout. In: Horeckor BL, Stadtman ER (eds) Current topics in cellular regulation vol 9, Academic, New York, pp 1–39Google Scholar
  24. 24.
    Fago A, Carratore V, di Prisco G, Feuerlein RJ, Sottrup-Jensen L, Weber RE (1995) The cathodic hemoglobin of Anguilla anguilla. J Biol Chem 270:18897–18902PubMedCrossRefGoogle Scholar
  25. 25.
    Gillen RG, Riggs A (1973) Structure and function of the isolated hemoglobins of the American eel, Anguilla rostrata. J Biol Chem 248: 1961–1969PubMedGoogle Scholar
  26. 26.
    Perutz MF, Kilmartin JV, Nishikura K, Fogg JH, Butler PJG (1980) Identification of residues contributing to the Bohr effect of human hemoglobin. J Mol Biol 138:649–670PubMedCrossRefGoogle Scholar
  27. 27.
    Feuerlein RJ, Weber RE (1996) Oxygen equilibria of cathodic eel hemoglobin analysed in terms of the MWC model and Adair’s successive oxygenation theory. J Comp Physiol B 165:597–606PubMedCrossRefGoogle Scholar
  28. 28.
    Perutz MF, Brunori M (1982) Stereochemistry of cooperative effects in fish and amphibian hemoglobins. Nature 299:421–426PubMedCrossRefGoogle Scholar
  29. 29.
    Gronenborn AM, Clore GM, Brunori M, Giardina B, Falcioni G, Perutz MF (1984) Stereochemistry of ATP and GTP bound to fish haemoglobins. J Mol Biol 178:731–742PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2000

Authors and Affiliations

  • A. Olianas
    • 1
  • M. T. Sanna
    • 1
  • A. Fais
    • 1
  • A. Pisano
    • 1
  • S. Salvadori
    • 2
  • A. M. Deiana
    • 2
  • M. Corda
    • 1
  • M. Pellegrini
    • 1
  1. 1.Department of Science Applied to BiosystemsUniversity of CagliariCagliariItaly
  2. 2.Department of Animal Biology and EcologyUniversity of CagliariCagliariItaly

Personalised recommendations