Advertisement

Oxygen-Transport System and Mode of Life in Antarctic Fish

  • M. Tamburrini
  • G. Di Prisco

Abstract

The separation of Antarctica from South America occurred 22–25 million years ago with the opening of the Drake Passage, and produced the Circum-Antarctic Current and the development of the Antarctic Polar Front. With the reduction of heat exchange from northern latitudes, cooling of the environment proceeded to the present extreme conditions. To date Antarctica is indeed a unique natural laboratory for the study of temperature adaptations and for understanding the interplay among biochemical/physiological processes, ecology and adaptive evolution.

Keywords

Drake Passage Antarctic Fish Bohr Effect Root Effect Antarctic Polar Front 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    di Prisco G, D’Avino R, Caruso C, Tamburrini M, Camardella L, Rutigliano B, Carratore V, Romano M (1991) The biochemistry of oxygen transport in red-blooded Antarctic fish. In: di Prisco G, Maresca B, Tota B (eds) Biology of Antarctic fish. Springer, Berlin Heidelberg New York, pp 263–281Google Scholar
  2. 2.
    di Prisco G, Tamburrini M, D’Avino R (1998) Oxygen-transport systems in extreme environments: multiplicity and structure/function relationship in hemoglobins of Antarctic fish. In: Pörtner HO, Playle R (eds) Cold ocean physiology. Cambridge University Press, Cambridge, pp 143–165 (Society of experimental biology, seminar series 66)CrossRefGoogle Scholar
  3. 3.
    di Prisco G, Giardina B (1996) Temperature adaptation: molecular aspects. In: Johnston IA, Bennett AF (eds) Animals and temperature. Phenotypic and evolutionary adaptation. Cambridge University Press, Cambridge, pp 23–51 (Society of experimental biology, seminar series 59)CrossRefGoogle Scholar
  4. 4.
    di Prisco G (1997) Physiological and biochemical adaptations in fish to a cold marine environment. In: Battaglia B, Valencia J, Walton DWH (eds) Proc SCAR 6th Biol Symp, Venice (Antarctic communities: species, structure and survival). Cambridge University Press, Cambridge, pp 251–260Google Scholar
  5. 5.
    Gon O, Heemstra PC (eds) (1990) Fishes of the Southern Ocean. JLB Smith Institute of Ichthyology, South AfricaGoogle Scholar
  6. 6.
    Eastman JT (1993) Antarctic fish biology. Evolution in a unique environment. Academic, San DiegoGoogle Scholar
  7. 7.
    Ruud JT (1954) Vertebrates without erythrocytes and blood pigment. Nature 173:848–850PubMedCrossRefGoogle Scholar
  8. 8.
    Wells RMG, Macdonald JA, di Prisco G (1990) Thin-blooded Antarctic fishes: a rheological comparison of the haemoglobin-free icefishes Chionodraco kathleenae and Cryodraco antarcticus with a red-blooded nototheniid, Pagothenia bernacchii. J Fish Biol 36:595–609CrossRefGoogle Scholar
  9. 9.
    di Prisco G, Macdonald JA, Brunori M (1992) Antarctic fish survive exposure to carbon monoxide. Experientia 48:473–475PubMedCrossRefGoogle Scholar
  10. 10.
    Riggs AF (1988) The Bohr effect. Ann Rev Physiol 50:181–204CrossRefGoogle Scholar
  11. 11.
    Brittain T (1987) The Root effect. Comp Biochem Physiol 86B:473–481Google Scholar
  12. 12.
    Eastman JT (1988) Ocular morphology in Antarctic notothenioid fishes. J Morphol 196:283–306CrossRefGoogle Scholar
  13. 13.
    D’Avino R, Caruso C, Tamburrini M, Romano M, Rutigliano B, Polverino de Laureto P, Camardella L, Carratore V, di Prisco G (1994) Molecular characterization of the functionally distinct hemoglobins of the Antarctic fish Trematomus newnesi. J Biol Chem 269:9675–9681PubMedGoogle Scholar
  14. 14.
    Tamburrini M, di Prisco G (1993) Biochemical adaptations in polar marine environments. Ital J Biochem 42:258–259AGoogle Scholar
  15. 15.
    Hubold G (1985) On the early life history of the high-Antarctic silverfish Pleuragramma antarcticum. In: Siegfried WR, Condy PR, Laws RM (eds) Proc 4th SCAR Biol Symp (Antarctic nutrient cycles and food webs). Springer, Berlin Heidelberg New York, pp 445–451Google Scholar
  16. 16.
    Tamburrini M, D’Avino R, Fago A, Carratore V, Kunzmann A, di Prisco G (1996) The unique hemoglobin system of Pleuragramma antarcticum, an Antarctic migratory teleost. Structure and function of the three components. J Biol Chem 271:23780–23785PubMedCrossRefGoogle Scholar
  17. 17.
    Tamburrini M, D’Avino R, Carratore V, Kunzmann A, di Prisco G (1997) The hemoglobin system of Pleuragramma antarcticum: correlation of hematological and biochemical adaptations with life style. Comp Biochem Physiol 118A:1037–1044CrossRefGoogle Scholar
  18. 18.
    Macdonald JA, Wells RMG (1991) Viscosity of body fluids from Antarctic notothenioid fish. In: di Prisco G, Maresca B, Tota B (eds) Biology of Antarctic fish. Springer, Berlin Heidelberg New York, pp 163–178Google Scholar
  19. 19.
    Tamburrini M, di Prisco G (1994) The unique features of the hemoglobin system of the Antarctic teleost Pagothenia borchgrevinki. “Proteine `94”, Abstr A25, p 43Google Scholar
  20. 20.
    Tamburrini M, Romano M, Carratore V, Kunzmann A, Coletta M, di Prisco G (1998) The hemoglobins of the Antarctic fishes Artedidraco orianae and Pogonophryne scotti. Amino acid sequence, lack of cooperativity, and ligand binding properties. J Biol Chem 273:32452–32458PubMedCrossRefGoogle Scholar
  21. 21.
    di Prisco G, Tamburrini M (1992) The hemoglobins of marine and freshwater fish: the search for correlations with physiological adaptation. Comp Biochem Physiol 102B:661–671Google Scholar
  22. 22.
    Arntz WE, Gutt J, Klages M (1997) Antarctic marine biodiversity. In: Battaglia B, Valencia J, Walton DWH (eds) Proc SCAR 6th Biol Symp, Venice (Antarctic communities: species, structure and survival). Cambridge University Press, Cambridge, pp 3–14Google Scholar

Copyright information

© Springer-Verlag Italia 2000

Authors and Affiliations

  • M. Tamburrini
    • 1
  • G. Di Prisco
    • 1
  1. 1.Institute of Protein Biochemistry and EnzymologyCNRNaplesItaly

Personalised recommendations