Recent Evolution of the Hemoglobinless Condition of the Antarctic Icefishes

  • H. W. DetrichIII


Certainly one of the most unusual “adaptations” of vertebrates is the loss of erythrocytes and the oxygen transport protein hemoglobin [[1]] by the Antarctic icefishes (family Channichthyidae, suborder Nototheniodei). Lacking an oxygen transporter, the icefishes nonetheless maintain normal metabolic function by delivering oxygen to their tissues in physical solution in their “colorless” or “white” blood. In the chronically cold (−1.86 to+1 C) and oxygen-rich environment experienced by these psychrophilic organisms, reduction of the hematocrit to near zero appears to have been selectively advantageous because it significantly diminishes the energetic cost associated with circulation of a highly viscous, corpuscular blood fluid [[2]–[5]]. Hematocrit, mean cellular hemoglobin concentration, and hemoglobin chain multiplicity all decrease with increasing phylogenetic divergence among the red-blooded Antarctic notothenioid fishes [[6]], and the Bathydraconidae (the sister group to the channichthyids) approach the hematological extreme displayed by the white-blooded icefishes. Nevertheless, the development in icefishes of compensatory physiological and circulatory adaptations that reduce tissue oxygen demand and enhance oxygen delivery (e.g., modest suppression of metabolic rates, enhanced gas exchange by large, well-perfused gills and a scaleless skin, and large increases in cardiac output and blood volume) argues that loss of hemoglobin and erythrocytes was probably maladaptive under conditions of physiological stress. Therefore, the most plausible evolutionary scenario is that the phylogenetic trend to reduced hematocrits and decreased hemoglobin synthesis in notothenioid fishes developed concurrently with enhancements to their respiratory and circulatory systems, leading ultimately to the acorpuscular, hemoglobinless condition of the icefishes.


Globin Gene Antarctic Fish Notothenioid Fish Globin Locus Specific Metabolic Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ruud JT (1954) Vertebrates without erythrocytes and blood pigment. Nature 173:848-850PubMedCrossRefGoogle Scholar
  2. 2.
    Eastman JT (1993) Antarctic fish biology: evolution in a unique environment. Academic, San DiegoGoogle Scholar
  3. 3.
    D’Avino R, Caruso C, Camardella L, Schinin¨¤ ME, Rutigliano B, Romano M, Carratore V, Barra D, di Prisco G (1991) An overview of the molecular structure and functional properties of the hemoglobins of a cold-adapted Antarctic teleost. In: di Prisco G (ed) Life under extreme conditions: biochemical adaptation. Springer, Berlin Heidelberg New York, pp 15-33CrossRefGoogle Scholar
  4. 4.
    di Prisco G, D’Avino R, Caruso C, Tamburini M, Camardella L, Rutigliano B, Carratore V, Romano M (1991) The biochemistry of oxygen transport in red-blooded Antarctic fish. In: di Prisco G, Maresca B, Tota B (eds) Biology of Antarctic fish. Springer, Berlin Heidelberg New York, pp 263-281Google Scholar
  5. 5.
    Macdonald JA, Montgomery JC, Wells RMG (1987) Comparative physiology of Antarctic fishes. Adv Mar Biol 24:321-388CrossRefGoogle Scholar
  6. 6.
    di Prisco G (1998) Molecular adaptations of Antarctic fish hemoglobins. In: di Prisco G, Pisano E, Clarke A (eds) Fishes of Antarctica: a biological overview. Springer, MilanoCrossRefGoogle Scholar
  7. 7.
    McMorrow T, Wagner A, Deryckere F, Gannon F (1996) Structural organization and sequence analysis of the globin locus in Atlantic salmon. DNA Cell Biol 15:407-414PubMedCrossRefGoogle Scholar
  8. 8.
    Chan FY, Robinson J, Brownlie A, Shivdasani RA, Donovan A, Brugnara C, Kim J, Lau BC, Witkowska E, Zon LI (1997) Characterization of adult a-and 3-globin genes in the zebrafish. Blood 89:688-700PubMedGoogle Scholar
  9. 9.
    Miyata M, Aoki T (1997) Head-to-head linkage of carp a-and 13-globin genes. Biochim Biophys Acta 1354:127-133PubMedCrossRefGoogle Scholar
  10. 10.
    Cocca E, Ratnayake-Lecamwasam M, Parker SK, Camardella L, Ciaramella M, di Prisco G, Detrich HW, III (1995) Genomic remnants of a-globin genes in the hemoglobinless antarctic icefishes. Proc Natl Acad Sci USA 92:1817-1821PubMedCrossRefGoogle Scholar
  11. 11.
    Zhao Y, Ratnayake-Lecamwasam M, Parker SK, Cocca E, Camardella L, di Prisco G, Detrich HW, III (1998) The major adult a-globin gene of Antarctic teleosts and its remnants in the hemoglobinless icefishes: calibration of the mutational clock for nuclear genes. J Biol Chem 273:14745-14752PubMedCrossRefGoogle Scholar
  12. 12.
    Martin AP, Palumbi SR (1993) Body size, metabolic rate, generation time, and the molecular clock. Proc Natl Acad Sci USA 90:4087-4091PubMedCrossRefGoogle Scholar
  13. 13.
    Efstratiadis A, Posakony JW, Maniatis T, Lawn RM, O’Connell C, Spritz RA, DeRiel JK, Forget BG, Weissman SM, Slightom JL, Blechl AE, Smithies O, Baralle FE, Shoulders CC, Proudfoot NJ (1980) The structure and evolution of the human (3-globin gene family. Cell 21:653-668PubMedCrossRefGoogle Scholar
  14. 14.
    Lawn RM, Efstratiadis A, O’Connell C, Maniatis T (1980) The nucleotide sequence of the human 0-globin gene. Cell 21:647-651PubMedCrossRefGoogle Scholar
  15. 15.
    Liebhaber SA, Gootsens MJ, Kan YW (1980) Cloning and complete nucleotide sequence of human 5’ alpha-globin gene. Proc Natl Acad Sci USA 77:7054-7058PubMedCrossRefGoogle Scholar
  16. 16.
    D’Avino R, di Prisco G (1989) Hemoglogin from the antarctic fish Notothenia coriiceps neglecta. 1. Purification and characterization. Eur J Biochem 179:699-705PubMedCrossRefGoogle Scholar
  17. 17.
    Fago A, D’Avino R, di Prisco G (1992) The hemoglobins of Notothenia angustata, a temperate fish belonging to a family largely endemic to the Antarctic Ocean. Eur J Biochem 210:963-970PubMedCrossRefGoogle Scholar
  18. 18.
    Proudfoot NJ, Maniatis T (1980) The structure of a human a-globin pseudogene and its relationship to a-globin gene duplication. Cell 21:537-544PubMedCrossRefGoogle Scholar
  19. 19.
    Lacy E, Maniatis T (1980) The nucleotide sequence of a rabbit 13-globin pseudogene. Cell 21:545-553PubMedCrossRefGoogle Scholar
  20. 20.
    Vanin EF (1985) Processed pseudogenes: characteristics and evolution. Annu Rev Gen 19:253-272CrossRefGoogle Scholar
  21. 21.
    Hureau JC, Petit D, Fine JM, Marneux M (1977) New cytological, biochemical, and physiological data on the colorless blood of the Channichthyidae (Pisces, Teleosteans, Peciformes). In: Llano GA (ed) Adaptations within antarctic ecosystems. Smithsonian Institution, Washington, DC, pp 459-477Google Scholar
  22. 22.
    Barber DL, Mills Westermann JE, White MG (1981) The blood cells of the Antarctic icefish Chaenocephalus aceratus Lonnberg: light and electron microscopic observations. J Fish Biol 19:11-28CrossRefGoogle Scholar
  23. 23.
    Bargelloni L, Ritchie PA, Patarnello T, Battaglia B, Lambert DM, Meyer A (1994) Molecular evolution at subzero temperatures: mitochondrial and nuclear phylogenies of fishes from Antarctica (suborder Notothenioidei), and the evolution of antifreeze glycopeptides. Mol Biol Evol 11:854-863PubMedGoogle Scholar
  24. 24.
    Martin AP, Naylor GJP, Palumbi SR (1992) Rates of mitochondrial DNA evolution in sharks are slow compared with mammals. Nature 357:153-155PubMedCrossRefGoogle Scholar
  25. 25.
    DeWitt HH (1971) Coastal and deep-water benthic fishes of the Antarctic. In: Bushnell VC (ed) Antarctic map folio series, folio15. American Geographical Society, New York, pp 1-10Google Scholar
  26. 26.
    Eastman JT (1991) Evolution and diversification of Antarctic notothenioid fishes. Am Zool 31:93-109Google Scholar
  27. 27.
    Chen L, DeVries AL, Cheng CHC (1997) Evolution of antifreeze glycoprotein gene from a trypsinogen gene in Antarctic noththenioid fish. Proc Natl Acad Sci USA 94:3811-3816PubMedCrossRefGoogle Scholar
  28. 28.
    Cheng CHC (1998) Origin and mechanism of evolution of antifreeze glycoproteins in polar fishes. In: di Prisco G, Pisano E, Clarke A (eds) Fishes of Antarctica: a biological overview. Springer, Milano, pp 311-328CrossRefGoogle Scholar
  29. 29.
    Cheng CHC, Chen L (1999) Evolution of an antifreeze glycoprotein: a blood protein that keeps Antarctic fish from freezing arose from a digestive enzyme. Nature 401:443-444PubMedCrossRefGoogle Scholar
  30. 30.
    Parker SK, Detrich HW III (1998) Evolution, organization, and expression of a-tubulin genes in the Antarctic fish Notothenia coriiceps: a tandem gene cluster generated by recent gene duplication, inversion, and divergence. J Biol Chem 273:34358-34369PubMedCrossRefGoogle Scholar
  31. 31.
    Sidell BD, Vayda ME, Small DJ, Moylan TJ, Londraville RL, Yuan ML, Rodnick KJ, Eppley ZA, Costello L (1997) Variable expression of myoglobin among the hemoglobinless Antarctic icefishes. Proc Natl Acad Sci USA 94:3420-3424PubMedCrossRefGoogle Scholar
  32. 32.
    Small DJ, Vayda ME, Sidell BD (1998) The myoglobin gene of Antarctic teleosts contains three A+T rich introns. J Mol Evol 47:156-166PubMedCrossRefGoogle Scholar
  33. 33.
    Vayda ME, Small DJ, Yuan M-L, Costello L, Sidell BD (1997) Conservation of the myoglobin gene among Antarctic notothenioid fishes. Mol Mar Biol Biotech 6:207-216Google Scholar

Copyright information

© Springer-Verlag Italia 2000

Authors and Affiliations

  • H. W. DetrichIII
    • 1
  1. 1.Department of BiologyNortheastern UniversityBostonUSA

Personalised recommendations