The Organization of the ß-Globin Gene Cluster and the Nucleotide Sequence of the ß-Globin Gene of Cyprus Mouflon (Ovis gmelini ophion)

  • E. Serreri
  • E. Hadjisterkotis
  • S. Naitana
  • A. Rando
  • P. Ferranti
  • M. Corda
  • L. Manca
  • B. Masala


The 13-globin gene cluster of the domestic sheep (Ovis aries) shows two common haplotypes: the A haplotype, which bears the adult ßA allele (HBBA), and the B haplotype, which bears the adult ßB allele (HBBB) [1, 2]. The chromosomal organization of the A haplotype was found to be similar to that present in goat (Capra hircus) since it shows the same triplication (5’ Er_Ea_NJßI ßc_E[u_Erv_Jßrr_ßn_£v_Evr_ NJß,rr-ßF-3’) of an ancestral four gene set (E-E-NJß-ß) [3]. This set is characterized by the presence of two embryonic genes (e), one pseudogene (NJß), and one adult gene (ß). The expression of the adult gene varies during ontogenic development and under different physiological conditions. The ßc, ßA, and ßF genes are, in fact, expressed during juvenile, adult and fetal life, respectively, and the ßc gene expression is reactivable, at the expense of ßA gene, under particular physiological or experimental conditions such as anemia and hypoxia or the administration of erythropoietin [4-6]. The B haplotype is considered to have diverged from the A haplotype, as the result of a recent deletion from a triplicated locus. In fact, due to the lack of the whole juvenile four-gene set containing the ßc gene, it is duplicated (5’ er srr NJßr ßB Errr-EIV yrßrI ßF-3’) and sheep which are homozygous for the ßB allele do not exhibit the ßB¡ªcswitching


Globin Gene Oxygen Affinity Domestic Sheep Globin Chain Molecular Adaptation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Garner KJ, Lingrel JB (1988) Structural organization of the ß-globin locus of Bhaplotype sheep. Mol Biol Evol 5:134-140Google Scholar
  2. 2.
    Garner KJ, Lingrel JB (1989) A comparison of the 3A- and ßB-globin gene clusters of sheep. J Mol Evol 28:175-184CrossRefGoogle Scholar
  3. 3.
    Townes TM, Fitzgerald MC, Lingrel JB (1984) Triplication of a four-gene set during evolution of the goat ß-globin locus produced three genes now expressed differentially during development. Proc Natl Acad Sci USA 81:6589-6593PubMedCrossRefGoogle Scholar
  4. 4.
    Huisman THJ, Adams HR, Dimmock MO, Edwards WE, Wilson JB (1967) The structure of goat hemoglobins. J Biol Chem 242:2534-2541PubMedGoogle Scholar
  5. 5.
    Huisman THJ, Lewis JP, Blunt MH, Adams HR, Edwards WE, Wilson JB (1969) Hemoglobin C in newborn sheep and goats: a possible explanation for its function and biosynthesis. Pediatr Res 3:189-198PubMedCrossRefGoogle Scholar
  6. 6.
    Boyer SH, Crosby EF, Noyes AN, Kaneko JJ, Keeton K, Zinkl J (1968) Hemoglobin switching in non-anemic sheep. Johns Hopkins Med J 123:92-94PubMedGoogle Scholar
  7. 7.
    Bunch TD, Foote WC, Spillett JJ (1976) Translocations of acrocentric chromosomes and their implications in the evolution of sheep (Ovis). Cytogenet Cell Genet 17:122-136PubMedCrossRefGoogle Scholar
  8. 8.
    Bunch TD, Nadler, CF (1980) Giemsa-band patterns of the tahr and chromosomal evolution of the tribe Caprini. J Hered 71:110-116PubMedGoogle Scholar
  9. 9.
    Bunch TD, Nguyen TC (1982) Blood group comparisons between European mouflon sheep and North American desert bighorn sheep. J Hered 73:112-114PubMedGoogle Scholar
  10. 10.
    Ryder ML (1984) Sheep. In: Mason IL (ed) Evolution of domesticated animals. Longman, London, pp 63-85Google Scholar
  11. 11.
    Di Gregorio P, Rando A, Masina P (1987) Differences in the DNA restriction patterns between sheep with Hb A and Hb B. Anim Genet 18:214-247Google Scholar
  12. 12.
    Poplin F (1979) Origine du muflon de Corse dans une nouvelle perspective paléontologique, par marronage. Ann Genet Sel Anim 11:133-143PubMedGoogle Scholar
  13. 13.
    Vigne JD (1983) Les mammiferes post-glaciaires de Corse. Étude archéozoologique. Gallia Prehistoire Éditions du CNRS, ParisGoogle Scholar
  14. 14.
    Masseti MG (1997) The prehistorical diffusion of the Asiatic mouflon Ovis gmelini Blyth, 1841, and of the Bezoar goat, Capra aegagrus Erxleben, 1777, in the Mediterranean region beyond their natural distributions. In: Hadjisterkotis E (ed) The Mediterranean mouflon: management, genetics and conservation. Cassoulides and Sons, Nicosia, pp 1-19Google Scholar
  15. 15.
    Pfeffer P (1967) Le mouflon de Corse (Ovis ammon musimon Schreber, 1782). Position systematique, écologie, et éthologie comparées. Mammalia 31:1-262CrossRefGoogle Scholar
  16. 16.
    Haaften JL Van (1971) Study on the situation of the mouflon in Cyprus and Turkey. CE/Nat 19:1-12Google Scholar
  17. 17.
    Schaller GB (1977) Mountain monarchs. Chicago University Press, Chicago and London.Google Scholar
  18. 18.
    Cugnasse JM (1994) Révision taxinomique des mouflons des îles méditerranéennes. Mammalia 58:507-512Google Scholar
  19. 19.
    Hadjisterkotis E, Bider JR (1997) Cyprus. In: Shackleton DM (ed) Wild sheep and goats and their relatives. Status survey and conservation action plan for Caprinae. IUCN, Gland and Cambridge, pp 89-92Google Scholar
  20. 20.
    Hadjisterkotis E, (1996) Herkunft, Taxonomie und neuere Entwicklung desw Zyprischen Muflons (Ovis gmelini ophion). Z Jagdwiss 42:104-110Google Scholar
  21. 21.
    Valdez R, Nadler CF, Bunch TD (1978) Evolution of wild sheep in Iran. Evolution 32:56-72CrossRefGoogle Scholar
  22. 22.
    Naitana S, Ledda S, Cocco E, Manca L, Masala B (1990) Hemoglobin phenotype of the European mouflon sheep living on the Island of Sardinia. Anim Genet 21:67-75Google Scholar
  23. 23.
    Rando A, Di Gregorio P, Capuano M, Senese C, Manca L, Naitana S, Masala B (1996) A comparison between the ß-globin gene clusters of sheep (Ovis aries) and Sardinian mouflon (Ovis gmelini musimon). Genet Select Evol 28:217-222CrossRefGoogle Scholar
  24. 24.
    Blunt MH, Huisman THJ (1975) The hemoglobin of sheep. In: Blunt MH (ed) The blood of sheep. Springer, Berlin Heidelberg New York, pp 155-183CrossRefGoogle Scholar
  25. 25.
    Corda M, Giardina B, Pellegrini M, Manca L, Olianas A, Sanna MT, Fais A, Masala B (1997) A comparative study on the functional properties of the wild European mouflon and domestic sheep hemoglobins. Comp Biochem Physiol 117B:417-420Google Scholar
  26. 26.
    Rando A, Di Gregorio P, Capuano M, Senese C, Hadjisterkotis H, Musino L, Palici di Suni M, Manca L, Masala B (1997) The ß-globin gene clusters of domestic sheep (Ovis aries), and of Sardinian (O. gmelini musimon) and Cyprus (O. g. ophion) mouflon. In: Hadjisterkotis E (ed) The Mediterranean mouflon: management, genetics and conservation. Cassoulides and Son, Nicosia, pp 67-72Google Scholar
  27. 27.
    Masala B, Manca L (1991) Detection of the common Hb F Sardinia [A775(E19)I1e4Thr] variant by isoelectric focusing in normal newborn and in adult affected by elevated fetal hemoglobin syndromes. Clin Chim Acta 198:195-202PubMedCrossRefGoogle Scholar
  28. 28.
    Manca L, Formato M, Demuro P, Pilo G, Gallisai D, Orzalesi M, Masala B (1986) The y globin chain heterogeneity of the Sardinian newborn baby. Hemoglobin 10:519528Google Scholar
  29. 29.
    Masala B, Manca L (1994) Separation of globin chains by the reversed-phase high-performance liquid chromatography. Methods Enzymol 231:21-44PubMedCrossRefGoogle Scholar
  30. 30.
    Pucci P, Carestia C, Fioretti G, Mastrobuoni AM, Pagano L (1985) Protein fingerprint by fast atom bombardment mass spectrometry: characterization of normal and variant human haemoglobins. Biochem Biophys Res Commun 130:84-90PubMedCrossRefGoogle Scholar
  31. 31.
    Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory, New YorkGoogle Scholar
  32. 32.
    Rando A, Di Gregorio P, Masina P (1989) Differences in the number of embryonic and pseudo-beta-globin genes between Hb A and Hb B sheep. Biochem Genet 27:91-98PubMedCrossRefGoogle Scholar
  33. 33.
    Sanger F, Nickeln S, Coulson (1977) DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 74:5463-5467PubMedCrossRefGoogle Scholar
  34. 34.
    Pucci P, Malori A, Marino G, Metafora S, Esposito C, Porta R (1988) Beta-endorphin modification by transglutaminase in vitro: identification by FAB/MS of glutamine11 and lysine-29 as acyl donor and acceptor sites. Biochem Biophys Res Commun 154:735-740PubMedCrossRefGoogle Scholar
  35. 35.
    Stratil A, Bobäk P (1988) Comparison of biochemical polymorphisme in mouflon and sheep: Isoelectric differences in haemoglobins and quantitative variation of mouflon haemopexin. Comp Biochem Physiol 90B:159-162Google Scholar
  36. 36.
    Poyart C, Wajcman H, Kister J (1992) Molecular adaptation of hemoglobin function in mammals. Respir Physiol 90:3-17PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2000

Authors and Affiliations

  • E. Serreri
    • 1
  • E. Hadjisterkotis
    • 2
  • S. Naitana
    • 3
  • A. Rando
    • 4
  • P. Ferranti
    • 5
  • M. Corda
    • 6
  • L. Manca
    • 1
  • B. Masala
    • 1
  1. 1.Dept. of PhisiologicalBiochemical and Cell Sciences, University of SassariSassariItaly
  2. 2.Game and Fauna ServiceMinistry of the InteriorNicosiaCyprus
  3. 3.Dept. of Animal BiologyUniversity of SassariSassariItaly
  4. 4.Institute of Animal ProductionUniversity of BasilicataPotenzaItaly
  5. 5.Dept. of Organic and Biological ChemistryUniversity of NaplesNaplesItaly
  6. 6.Dept. of Sciences Applied to BiosystemsUniversity of CagliariMonserratoItaly

Personalised recommendations