Advertisement

Molecular Aspects of Temperature Adaptation

  • G. Di Prisco
  • B. Giardina
Conference paper

Abstract

Organisms living in extreme environments, such as Arctic and Antarctic polar regions, are exposed to strong constraints. One of these is temperature, often a stringent driving factor. Consequently, their evolution has included special adaptations, some of which have caused special modifications that have significant implications at the biochemical, physiological and molecular levels. Along these lines, scrutiny of macromolecules, e.g. proteins, provides an opportunity to establish structure-function relationships which may be involved in a specific adaptation to different physiological requirements.

Keywords

Globin Gene Brown Bear Oxygen Affinity Oxygen Binding Antarctic Fish 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    di Prisco G, D’Avino R, Caruso C, Tamburrini M, Camardella L, Rutigliano B, Carratore V, Romano M (1991) The biochemistry of oxygen transport in red-blooded Antarctic fish. In: di Prisco G, Maresca B, Tota B (eds) Biology of Antarctic fish. Springer, Berlin Heidelberg New York, pp 263–281Google Scholar
  2. 2.
    di Prisco G, Tamburrini M, D’Avino R (1998) Oxygen-transport system in extreme environments: multiplicity and structure-function relationship in haemoglobins of Antarctic fish. In: Pörtner HO, Playle RC (eds) Cold ocean physiology. Cambridge University Press, Cambridge, pp 143–165CrossRefGoogle Scholar
  3. 3.
    di Prisco G (1997) Physiological and biochemical adaptations in fish to a cold marine environment. In: Battaglia B, Valencia J, Walton DWH (eds) Proc SCAR 6th Biol Symp “Antarctic communities: species, structure and survival”. Cambridge University Press, Cambridge, pp 251–260Google Scholar
  4. 4.
    di Prisco G (1998) Molecular adaptations in Antarctic fish hemoglobins. In: di Prisco G, Pisano E, Clarke A (eds) Fishes of Antarctica. A biological overview. Springer, Milano Heidelberg New York, pp 339–353Google Scholar
  5. 5.
    Giardina B, Condo’ SG, Petruzzelli R, Bardgard A, Brix O (1990) Thermodynamics of oxygen binding to arctic hemoglobins: the case of reindeer. Biophys Chem 37:281–286PubMedCrossRefGoogle Scholar
  6. 6.
    Brix O, Bardgard A, Mathisen S, el-Sherbini S, Condo’ SG, Giardina B (1989) Arctic life adaptation. II. The function of musk ox hemoglobin. Comp Biochem Physiol 94B:135–138Google Scholar
  7. 7.
    Brix O, Condo’ SG, Ekker M, Tavazzi B, Giardina B (1990) Temperature modulation of oxygen transport in a diving mammal (Balaenoptera acutorostrata). Biochem J 271:509–513PubMedGoogle Scholar
  8. 8.
    Brix O, Bougund S, Barunung T, Colosimo A, Giardina B (1989) Endothermic oxygenation of hemocyanin in the krill. FEBS Lett 247:177–180CrossRefGoogle Scholar
  9. 9.
    Giardina B, Condo’ SG, Brix 0 (1991) Modulation of oxygen binding in squid blood. In: Vinogradov SN, Kapp OH (eds) Structure and function of invertebrate oxygen carriers. Springer, Berlin Heidelberg New York, pp 333–339Google Scholar
  10. 10.
    Tamburrini M, Condo’ SG, di Prisco G, Giardina B (1994) Adaptation to extreme environments: structure-function relationships in Emperor penguin hemoglobin. J Mol Biol 237:615–621PubMedCrossRefGoogle Scholar
  11. 11.
    Giardina B, Galtieri A, Lania A, Ascenzi P, Desideri A, Cerroni L, Condo’ SG (1992) Reduced sensitivity of oxygen transport to allosteric effectors and temperature in loggerhead sea turtle hemoglobin: functional and spectroscopic studies. Biochim Biophys Acta 1159:129–133PubMedCrossRefGoogle Scholar
  12. 12.
    Gon O, Heemstra PC (eds) (1990) Fishes of the Southern Ocean. JLB Smith Institute of Ichthyology, Grahamstown, South AfricaGoogle Scholar
  13. 13.
    Eastman JT (1993) Antarctic fish biology. Evolution in a unique environment. Academic Press, San DiegoGoogle Scholar
  14. 14.
    Ruud JT (1954) Vertebrates without erythrocytes and blood pigment. Nature 173:848850Google Scholar
  15. 15.
    Clarke A, North AW (1991) Is the growth of polar fish limited by temperature? In: di Prisco G, Maresca B, Tota B (eds) Biology of Antarctic fish. Springer, Berlin Heidelberg New York, pp 54–69Google Scholar
  16. 16.
    Macdonald JA, Montgomery JC, Wells RMG (1987) Comparative physiology of Antarctic fishes. Adv Mar Biol 24:321–388CrossRefGoogle Scholar
  17. 17.
    Wells RMG, Macdonald JA, di Prisco G (1990) Thin-blooded Antarctic fishes: a rheological comparison of the haemoglobin-free icefishes, Chionodraco kathleenae and Cryodraco antarcticus, with a red-blooded nototheniid, Pagothenia bernacchii. J Fish Biol 36:595–609CrossRefGoogle Scholar
  18. 18.
    di Prisco G, Macdonald JA, Brunori M (1992) Antarctic fishes survive exposure to carbon monoxide. Experientia 48:473–475PubMedCrossRefGoogle Scholar
  19. 19.
    Wells RMG (1990) Hemoglobin physiology in vertebrate animals: a cautionary approach to adaptionist thinking. In: Boutilier RG (ed) Advances in Comparative Environmental Physiology, vol 6, Springer, Berlin Heidelberg New York, pp 143–161Google Scholar
  20. 20.
    Cocca E, Ratnayake-Lecamwasam M, Parker SK, Camardella L, Ciaramella M, di Prisco G, Detrich HW III (1995) Genomic remnants of a-globin genes in the hemoglobinless Antarctic icefishes. Proc Natl Acad Sci USA 92:1817–1821PubMedCrossRefGoogle Scholar
  21. 21.
    Cocca E, Ratnayake-Lecamwasam M, Parker SK, Camardella L, Ciaramella M, di Prisco G, Detrich HW III (1997) Do the hemoglobinless icefishes have globin genes? Comp Biochem Physiol 118A:1027–1030CrossRefGoogle Scholar
  22. 22.
    Riggs A (1988) The Bohr effect. Ann Rev Physiol 50:181–204CrossRefGoogle Scholar
  23. 23.
    Brittain T (1987). The Root effect. Comp Biochem Physiol 86B:473–481Google Scholar
  24. 24.
    D’Avino R, di Prisco G (1997) The hemoglobin system of Antarctic and non-Antarctic notothenioid fishes. Comp Biochem Physiol 118A:1045–1049CrossRefGoogle Scholar
  25. 25.
    Fago A, D’Avino R, di Prisco G (1992) The hemoglobins of Notothenia angustata, a temperate fish belonging to a family largely endemic to the Antarctic Ocean. Eur J Biochem 210:963–970PubMedCrossRefGoogle Scholar
  26. 26.
    D’Avino R, Caruso C, Tamburrini M, Romano M, Rutigliano B, Polverino de Laureto P, Camardella L, Carratore V, di Prisco G (1994) Molecular characterization of the functionally distinct hemoglobins of the Antarctic fish Trematomus newnesi. J Biol Chem 269:9675–9681PubMedGoogle Scholar
  27. 27.
    Tamburrini M, D’Avino R, Fago A, Carratore V, Kunzmann A, di Prisco G (1996) The unique hemoglobin system of Pleuragramma antarcticum, an Antarctic migratory teleost. Structure and function of the three components. J Biol Chem 271:23780–23785PubMedCrossRefGoogle Scholar
  28. 28.
    Tamburrini M, Romano M, Carratore V, Kunzmann A, Coletta M, di Prisco G (1998) The hemoglobins of the Antarctic fishes Artedidraco orianae and Pogonophryne scotti. Amino acid sequence, lack of cooperativity and ligand binding properties. J Biol Chem 273:32452–32459PubMedCrossRefGoogle Scholar
  29. 29.
    DeVries AL (1988) The role of antifreeze glycopeptides and peptides in the freezing avoidance of Antarctic fishes. Comp Biochem Physiol 90B:611–621Google Scholar
  30. 30.
    Cheng CC, DeVries AL (1991) The role of antifreeze glycopeptides and peptides in the freezing avoidance of cold-water fish. In: di Prisco G (ed) Life under extreme conditions. Biochemical adaptations. Springer, Berlin Heidelberg New York, pp 1–14CrossRefGoogle Scholar
  31. 31.
    Cheng CC (1998) Origin and mechanism of evolution of antifreeze glycoproteins in polar fishes. In: di Prisco G, Pisano E, Clarke A (eds) Fishes of Antarctica. A biological overview. Springer, Milano Heidelberg New York, pp 311–328Google Scholar
  32. 32.
    Detrich HW III (1998) Molecular adaptation of microtubules and microtubule motors from Antarctic fish. In: di Prisco G, Pisano E, Clarke A (eds) Fishes of Antarctica. A biological overview. Springer, Milano Heidelberg New York, pp 139–149Google Scholar
  33. 33.
    Sweezey RR, Somero GN (1982) Polymerization thermodynamics and structural stabilities of skeletal muscle actins from vertebrates adapted to different temperatures and hydrostatic pressures. Biochemistry 21:4496–4503CrossRefGoogle Scholar
  34. 34.
    Ciardiello MA, Camardella L, di Prisco G (1995) Glucose-6-phosphate dehydrogenase from the blood cells of two Antarctic teleosts: correlation with cold adaptation. Biochim Biophys Acta 1250:76–82PubMedCrossRefGoogle Scholar
  35. 35.
    Ciardiello MA, Camardella L, di Prisco G (1997) Enzymes of Antarctic fishes: effect of temperature on catalysis. Cybium 21(4):443–450Google Scholar
  36. 36.
    Hochachka PW, Somero GN (1984) Biochemical adaptation. Princeton University Press, PrincetonGoogle Scholar
  37. 37.
    Coletta M, Condb SG, Scatena R, Clementi ME, Baroni S, Sletten SN, Brix O, Giardina B (1994) Synergistic modulation by chloride and organic phosphates of hemoglobin from bear (Ursus arctos). J Mol Biol 236:1401–1406PubMedCrossRefGoogle Scholar
  38. 38.
    di Prisco G, Tamburrini M (1992) The hemoglobins of marine and freshwater fish: the search for correlations with physiological adaptation. Comp Biochem Physiol 102B:661–671Google Scholar
  39. 39.
    Perutz MF (1987) Species adaptation in a protein molecule. Adv Prot Chem 36:213244Google Scholar
  40. 40.
    Stam WT, Beintema JJ, D’Avino R, Tamburrini M, Cocca E, di Prisco G (1998) Evolutionary studies on teleost hemoglobin sequences. In: di Prisco G, Pisano E, Clarke A (eds) Fishes of Antarctica. A biological overview. Springer, Milano Heidelberg New York, pp 355–359Google Scholar

Copyright information

© Springer-Verlag Italia 2000

Authors and Affiliations

  • G. Di Prisco
    • 1
  • B. Giardina
    • 2
  1. 1.Institute of Protein Biochemistry and EnzymologyCNRNaplesItaly
  2. 2.Institute of Chemistry, Faculty of MedicineCatholic University ‘Sacro Cuore’RomeItaly

Personalised recommendations