Axonal Injury and Disability in Multiple Sclerosis: Magnetic Resonance Spectroscopy as a Measure of Dynamic Pathological Change in White Matter

  • D. L. Arnold
  • N. De Stefano
  • S. Narayanan
  • P. M. Matthews
Part of the Topics in Neuroscience book series (TOPNEURO)


The traditional, “text book” view of multiple sclerosis (MS) is that it is a selectively demyelinating disease that leaves axons intact. According to this view, functional deficits arise from chronic conduction block due to chronic demyelination over extended sections of axons because the depolarising sodium channels remain restricted to previously internodal regions. This is now known to be incorrect [1,2].


Multiple Sclerosis Magnetic Resonance Spectroscopy Expand Disability Status Scale Axonal Injury Axonal Damage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Waxman SG (1982) Membranes, myelin, and the pathophysiology of multiple sclerosis. N Engl J Med 306: 1529–1533PubMedCrossRefGoogle Scholar
  2. 2.
    Waxman SG (1998) Demyelinating diseases — new pathological insights, new therapeutic targets. N Engl J Med 338: 323–325PubMedGoogle Scholar
  3. 3.
    McDonald WI (1994) Rachelle Fishman-Matthew Moore Lecture. The pathological and clinical dynamics of multiple sclerosis. J Neuropathol Exp Neurol, 53: 338–343PubMedCrossRefGoogle Scholar
  4. 4.
    Rivera-Quinones CMD, Schmelzer JD, Hunter SF et al (1998) Absence of neurological deficits following extensive demyelination in a class I-deficient murine model of multiple sclerosis. Nat Med 4: 187–193PubMedCrossRefGoogle Scholar
  5. 5.
    Charcot JM (1868) Histologic de la sclerose en plaques. Gazette des Hopitaux 554–558Google Scholar
  6. 6.
    Moffett JR, Namboodiri MAA, Cangro CB, Neale JH (1991) Immunohistochemical localization of N-acetylaspartate in rat brain. Neuroreport 2: 131–134PubMedCrossRefGoogle Scholar
  7. 7.
    Simmons ML, Frondoza CG, Coyle JT (1991) Immunocytochemical localization of Nacetyl-aspartate with monoclonal antibodies. Neuroscience 45: 37–45PubMedCrossRefGoogle Scholar
  8. 8.
    Davies SE, Newcombe J, Williams SR et al (1995) High resolution proton NMR spectroscopy of multiple sclerosis lesions. J Neurochem 64: 742–748PubMedCrossRefGoogle Scholar
  9. 9.
    Sarchielli P, Presciutti O, Pelliccioli GP et al (1999) Absolute quantification of brain metabolites by proton magnetic resonance spectroscopy in normal-appearing white matter of multiple sclerosis patients. Brain 122: 513–521PubMedCrossRefGoogle Scholar
  10. 10.
    De Stefano N, Matthews PM, Arnold DL (1995) Reversible decreases in AT-acetylaspartate after acute brain injury. Magn Reson Med 34: 721–727PubMedCrossRefGoogle Scholar
  11. 11.
    Arnold DL, Matthews PM, Francis GS et al (1992) Proton magnetic resonance spectroscopic imaging for metabolic characterization of demyelinating Plaques. Ann Neurol 31: 235–241PubMedCrossRefGoogle Scholar
  12. 12.
    Fu L, Matthews PM, De Stefano N et al (1998) Imaging axonal damage of normal appearing white matter in multiple sclerosis. Brain 121: 103–113PubMedCrossRefGoogle Scholar
  13. 13.
    Arnold DL, Matthews PM, Francis G, Antel J (1990) Proton magnetic resonance spectroscopy of human brain in vivo in the evaluation of multiple sclerosis: assessment of the load of disease. Magn Reson Med 14: 154–159PubMedCrossRefGoogle Scholar
  14. 14.
    Trapp BD, Peterson J, Ransohoff RM et al (1998) Axonal transection in the lesions of multiple sclerosis. N Engl J Med 338: 278–285PubMedCrossRefGoogle Scholar
  15. 15.
    Evangelou N, Esiri MM, Smith S et al (2000) Quantitative pathological evidence for axonal loss in normal appearing white matter in multiple sclerosis. Ann Neurol 47: 391–395PubMedCrossRefGoogle Scholar
  16. 16.
    Pike GB, De Stefano N, Narayanan S et al (2000) Multiple sclerosis: magnetization transfer MR imaging of white matter before lesion appearance on T2-weighted images. Radiology 215: 824–830PubMedGoogle Scholar
  17. 17.
    Filippi M, Rocca MA, Martino G et al (1998) Magnetization transfer changes in the normal appearing white matter precede the appearance of enhancing lesions in patients with multiple sclerosis. Ann Neurol 43: 809–814PubMedCrossRefGoogle Scholar
  18. 18.
    Goodkin DE, Rooney WD, Sloan R et al (1998) A serial study of new MS lesions and the white matter from which they arise. Neurology 51: 1689–1697PubMedCrossRefGoogle Scholar
  19. 19.
    Werring DJ, Brassat D, Droogan AG et al (2000) The pathogenesis of lesions and normal-appearing white matter changes in multiple sclerosis: a serial diffusion MRI study. Brain 123: 1667–1676PubMedCrossRefGoogle Scholar
  20. 20.
    Matthews PM, Cianfaglia L, McLaurin J et al (1995) Demonstration of reversible decreases in N-acetyl-aspartate (NAA) in a neuronal cell line: NAA decreases as a marker of sublethal neuronal dysfunction. Proc Soc Magn Reson Med 1: 147–147 [Abstract]Google Scholar
  21. 21.
    Brenner RE, Munro PMG, Williams SCR et al (1993) Abnormal neuronal mitochondria: a cause of reduction in NA in demyelinating disease. Proc Soc Magn Reson Med 1: 281–281 [Abstract]Google Scholar
  22. 22.
    Dautry C, Vaughan C, Brouillet E et al (2000) Early AT-acetylaspartate depletion is a marker of neuronal dysfunction in rats and primates chronically treated with the mitochondrial toxin 3-nitropropionic acid. J Cereb Blood Flow Metab 20: 789–799PubMedCrossRefGoogle Scholar
  23. 23.
    Narayanan S, De Stefano N, Francis GS et al (2000) Restoration of cerebral axonal function in multiple sclerosis patients treated with interferon ß-1b. Neurology 54 [Abstract]Google Scholar
  24. 24.
    De Stefano N, Narayanan S, Francis GS et al (2000) Evidence of axonal damage in the early stages of multiple sclerosis and its relevance to disability. Arch Neurol (in press)Google Scholar
  25. 25.
    De Stefano N, Matthews PM, Fu L et al (1998) Axonal damage correlates with disability in patients with relapsing remitting multiple sclerosis: results of a longitudinal MR spectroscopy study. Brain 121: 1469–1477PubMedCrossRefGoogle Scholar
  26. 26.
    Narayanan S, De Stefano N, Francis GS et al (2000) Disease duration influences the relationship between brain axonal injury, spinal cord atrophy and disability in multiple sclerosis. Proc Int Soc Magn Reson Med 1: 297 [Abstract]Google Scholar
  27. 27.
    Lee M, Reddy H, Johansen-Berg H et al (2000) The motor cortex shows adaptive functional changes to brain injury from multiple sclerosis. Ann Neurol 47: 606–613PubMedCrossRefGoogle Scholar
  28. 28.
    Reddy H, Narayanan S, Matthews PM et al (2000) Relating axonal injury to functional recovery in MS. Neurology 54: 236–239PubMedCrossRefGoogle Scholar
  29. 29.
    Reddy H, Narayanan S, Jenkinson S et al (2000) Evidence for adaptive cortical changes with early axonal injury from multiple sclerosis. Brain (in press)Google Scholar
  30. 30.
    Redford EJ, Kapoor R, Smith KJ (1997) Nitric oxide donors reversibly block axonal conduction: demyelinated axons are especially susceptible. Brain 120: 2149–2157PubMedCrossRefGoogle Scholar
  31. 31.
    Smith KJ, McDonald WI (1999) The pathophysiology of multiple sclerosis: the mechanisms underlying the production of symptoms and the natural history of the disease. Philos Trans R Soc Lond B Biol Sci 354: 1649–1673PubMedCrossRefGoogle Scholar
  32. 32.
    Trapp BD, Ransohoff RM, Fisher E et al (1999) Neurodegeneration in multiple sclerosis: relationship to neurological disability. Neuroscientist 5: 48–57CrossRefGoogle Scholar
  33. 33.
    Collins DL, Narayanan S, Caramanos Z et al (2000) Relation of cerebral atropy in multiple sclerosis to severity of disease and axonal injury. Neurology 54 [Suppl 3]: A17 [Abstract]Google Scholar

Copyright information

© Springer-Verlag Italia 2001

Authors and Affiliations

  • D. L. Arnold
  • N. De Stefano
  • S. Narayanan
  • P. M. Matthews

There are no affiliations available

Personalised recommendations