Skip to main content

Magnetic Resonance Spectroscopy in Experimental Allergic Encephalomyelitis

  • Chapter
Book cover Magnetic Resonance Spectroscopy in Multiple Sclerosis

Part of the book series: Topics in Neuroscience ((TOPNEURO))

  • 106 Accesses

Abstract

Experimental allergic (autoimmune) encephalomyelitis (EAE) is widely regarded as the animal model of multiple sclerosis (MS). The main features shared by both conditions are female sex in EAE or female preponderance in MS, young adults, genetic susceptibility with major histocompatibility complex (MHC) association or non-MHC-associated, isolated attacks of the central nervous system (CNS), and histologically, evidence of inflammation, lymphocytic infiltrates, macrophage infiltration and microglia activation, demyelination, and apoptosis in the CNS. However, the pathogenic role of autoreactive T-cells which is crucial in EAE has not been convincingly demonstrated in MS patients, and the role of a restricted use of the T-cell receptor repertoire, a constant finding in EAE, is at best inconstant in MS. Moreover, the acute form of EAE more resembles perivenous encephalomyelitis (i.e., acute disseminated encephalomyelitis or postinfectious encephalomyelitis or postvaccinal myelitis). The latter condition was first recognized in the late nineteenth century in a few subjects who had received Pasteur’s rabies virus vaccine and developed thereafter a paralytic syndrome of the CNS due to an autoimmune hypersensitivity reaction [1]. This observation led in the first half of the twentieth century to the idea that a neurological autoimmune disease could be caused after injection of CNS material, brain or spinal cord, into animals [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Remlinger P (1928) Les paralysies dues au traitement antirabique. Ann Institut Pasteur 55 (Suppl): 35–68

    Google Scholar 

  2. Rivers TM, Sprunt DH, Berry GP (1933) Observations on attempts to produce acute disseminated encephalomyelitis in monkeys. J Exp Med 58: 39–53

    Article  PubMed  CAS  Google Scholar 

  3. Storch MK, Stefferl A, Brehm U et al (1998) Autoimmunity to myelin oligodendrocyte glycoprotein in rats mimics the spectrum of multiple sclerosis pathology. Brain Pathol 8: 681–694

    Article  PubMed  CAS  Google Scholar 

  4. Kornek B, Storch MK, Weissert R et al (2000) Multiple sclerosis and chronic autoimmune encephalomyelitis. Am J Pathol 157: 267–276

    Article  PubMed  CAS  Google Scholar 

  5. Karlik SJ, Streijan G, Gilbert GG, Noseworthy JH (1986) NMR studies in experimen tal allergic encephalomyelitis (EAE): normalization of T1 and T2 with parenchymal cellular infiltration. Neurology 36: 1112–1114

    Article  PubMed  CAS  Google Scholar 

  6. Hawkins CP, Mackenzie F, Tofts P et al (1991) Patterns of blood-brain barrier breakdown in inflammatory demyelination. Brain 114: 801–810

    Article  PubMed  Google Scholar 

  7. Namer IJ, Steibel J, Poulet P et al (1993) Blood-brain barrier breakdown in MBP-specific T cell induced experimental allergic encephalomyelitis. Brain 116: 147–159

    Article  PubMed  Google Scholar 

  8. Seeldrayers PA, Syha J, Morrissey SP et al (1993) Magnetic resonance imaging investigation of the blood-brain barrier damage in adoptive transfer experimental autoimmune encephalomyelitis. J Neuroimmunol 46: 199–206

    Article  PubMed  CAS  Google Scholar 

  9. Morrissey SP, Stodal H, Zettl U et al (1996) Serial in vivo magnetic resonance imaging and its histological correlates in acute adoptive transfer EAE: quantification of inflammation and oedema. Brain 119: 239–248

    Article  PubMed  Google Scholar 

  10. Dousset V, Grossmann RI, Ramer KN et al (1992) Experimental allergic encephalomyelitis and multiple sclerosis: lesion characterization with magnetization transfer imaging. Radiology 182: 483–491

    PubMed  CAS  Google Scholar 

  11. Heide AC, Richards TL, Alvord EC Jr et al (1993) Diffusion imaging of experimental allergic encephalomyelitis. Magn Reson Med 29: 478–484

    Article  PubMed  CAS  Google Scholar 

  12. Richards TL, Alvord EC, He Y et al (1995) Experimental allergic encephalomyelitis in non-human primates: diffusion imaging of acute and chronic brain lesions. Multiple Sclerosis 1: 109–117

    PubMed  CAS  Google Scholar 

  13. Brenner RE, Munro PMG, Williams SCR et al (1993) The proton NMR spectrum in acute EAE: the significance of the change in the Cho:Cr ratio. Magn Reson Med 29: 737–745

    Article  PubMed  CAS  Google Scholar 

  14. Brenner RE, Morrissey SP, Munro PMG et al (1992) The relationship between Gd-DTPA enhancement and the onset of proton MR spectral changes in EAE. Workshop, Advances in Proton Magnetic Spectroscopy of the Brain, St. Catherine’s College, Oxford, England, 18 December 1992

    Google Scholar 

  15. Morrissey SP, Brenner RE, Hawkins CP et al (1993) Gadolinium-enhanced MRI of the brain in acute EAE correlation of clinical and MRI findings. Meeting of the Association of British Neurologists, Keele University, Stoke-on-Trent, 15-16 April 1993

    Google Scholar 

  16. Richards TL, Alvord EC, Peterson J et al (1995) Experimental allergic encephalomyelitis in non-human primates: MRI and MRS may predict the type of brain damage. NMR Biomed 8: 49–58

    Article  PubMed  CAS  Google Scholar 

  17. Arnold DL, Matthews PM, Francis GS et al (1992) Proton magnetic resonance spectroscopic imaging for metabolic characterization of demyelinating plaques. Ann Neurol 31: 235–241

    Article  PubMed  CAS  Google Scholar 

  18. Davie CA, Hawkins CP, Barker GJ et al (1994) Serial proton magnetic resonance spectroscopy in acute multiple sclerosis lesions. Brain 117: 49–58

    Article  PubMed  Google Scholar 

  19. Preece NE, Baker D, Butter C et al (1993) Experimental allergic encephalomyelitis raises betaine levels in the spinal cord of strain 13 guinea-pigs. NMR Biomed 6(3): 194–200

    Article  PubMed  CAS  Google Scholar 

  20. Mcllwain H, Bachelard HS (1985) Biochemistry and the central nervous system, 5th edn. Churchill Livingstone, Edinburgh, pp 282–335

    Google Scholar 

  21. McKeever MP, Weir DG, Molloy A, Scott JM (1991) Betaine-homocysteine methyltransferase: organ distribution in man, pig and rat and subcellular distribution in the rat. Clin Sci 81: 551

    PubMed  CAS  Google Scholar 

  22. Matthews PM, Francis G, Antel J, Arnold DL (1991) Proton magnetic resonance spectroscopy for metabolic characterization of plaques in multiple sclerosis (published erratum appears in Neurology 41: 1828). Neurology 41:1251–1256

    Article  PubMed  CAS  Google Scholar 

  23. van Hecke P, Marchal G, Johannik K et al (1991) Human brain proton localized NMR spectroscopy in multiple sclerosis. Magn Reson Med 18: 199–206

    Article  PubMed  Google Scholar 

  24. Miller DH, Austin SJ, Connelly A et al (1991) Proton nuclear magnetic resonance spectroscopy of an acute and chronic lesion in multiple sclerosis [letter]. Lancet 337: 58–59

    Article  PubMed  CAS  Google Scholar 

  25. Bruhn H, Frahm J, Merboldt KD et al (1992) Multiple sclerosis in children: cerebral metabolic alterations monitored by localization proton magnetic resonance spectroscopy in vivo. Ann Neurol 32: 140–150

    Article  PubMed  CAS  Google Scholar 

  26. D’Adamo AFJ, Yatsu FM (1966) Acetate metabolism in the nervous sytem. N-Acetyl-L-aspartic acid and the biosynthesis of brain lipids. J Neurochem 13: 961–965

    Article  PubMed  Google Scholar 

  27. D’Adamo AFJ, Gidez LI, Yatsu FM (1968) Acetyl transport mechanism. Involvement of N-Acetyl-aspartic acid in de novo fatty acidic biosynthesis in the developing rat brain. Exp Brain Res 5: 267–273

    PubMed  Google Scholar 

  28. Birken DL, Oldendorf WH (1989) N-acetyl-L-aspartic acid: a literature review of a compound prominent in 1H-NMR spectroscopic studies of the brain. Neurosci BiobehavRev 13: 23–31

    Article  CAS  Google Scholar 

  29. Patel TB, Clark JB (1979) Synthesis of N-acetyl-L-aspartate by rat brain mitochondria and its involvement in mitochondrial/cytosolic carbon transport. Biochem J 184:539–546

    PubMed  CAS  Google Scholar 

  30. Bates TE, Stranward M, Keelan J et al (1996) Inhibition of N-acetylaspartate production: implications for 2H-MRS studies in vivo. Neuroreport 7: 1397–1400

    Article  PubMed  CAS  Google Scholar 

  31. Simmons ML, Frondoza CG, Coyle JT (1991) Immunocytochemical localization of Nacetyl-aspartate with monoclonal antibodies. Neuroscience 45: 37–45

    Article  PubMed  CAS  Google Scholar 

  32. Urenjak J, Williams SR, Gadian DG, Noble M (1993) Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types. J Neurosci 13: 981–989

    PubMed  CAS  Google Scholar 

  33. Bhakoo KK, Pearce D (2000) In vitro expression of N-acetyl aspartate by oligodendrocytes. J Neurochem 74: 254–262

    Article  PubMed  CAS  Google Scholar 

  34. Davie CA, Silver NC, Barker GJ et al (1999) Does the extent of axonal loss and demyelination from chronic lesions in multiple sclerosis correlate with the clinical subgroup? J Neurol Neurosurg Psychiatry 67: 710–715

    Article  PubMed  CAS  Google Scholar 

  35. Davies SEC, Newcombe J, Williams SR et al (1995) High resolution proton NMR spectroscopy of multiple sclerosis lesions. J Neurochem 64: 742–748

    Article  PubMed  CAS  Google Scholar 

  36. Cadoux-Hudson TA, Kermode A, Rajagopalan B et al (1991) Biochemical changes within a multiple sclerosis plaque in vivo. J Neurol Neurosurg Psychiatry 54:1004–1006

    Article  PubMed  CAS  Google Scholar 

  37. Husted CA, Goodkin DS, Hugg JW et al (1994) Biochemical alterations in multiple sclerosis lesions and normal-appearing white matter detected by in vivo 31P and 1H spectroscopic imaging. Ann Neurol 36: 157–165

    Article  PubMed  CAS  Google Scholar 

  38. Forno LS, Rivera L (1975) Central pontine myelinolysis. J Neuropathol Exp Neurol 34: 77

    Google Scholar 

  39. Powers JM, McKeever PE (1976) Central pontine myelinolysis. An ultrastructural and elemental study. J Neurol Sci 29: 65–81

    Article  PubMed  CAS  Google Scholar 

  40. Tofts PB (1994) Metabolite concentrations in the developing brain estimated with proton MR spectroscopy. J Magn Reson Imaging 4: 674–680

    Article  Google Scholar 

  41. Kato T, Nishina M, Matsushita K et al (1997) Neuronal maturation and N-acetyl-Laspartic acid development in human fetal and child brains. Brain Dev 19: 131–133

    Article  PubMed  CAS  Google Scholar 

  42. McDonald WI, Miller DH, Barnes D (1992) The pathological evolution of multiple sclerosis. Neuropathol Appl Neurobiol 18: 319–334

    Article  PubMed  CAS  Google Scholar 

  43. Ingles BA, Brenner RE, Munro PMG et al (1992) Measurement of proton NMR relaxation times for NAA, Cr, and Cho in acute EAE. In: Proceedings of the Eleventh Annual Meeting of the Society for Magnetic Resonance in Medicine. Book of abstracts: Works in progress, p 2162

    Google Scholar 

  44. De Stefano N, Matthews PM, Antel J et al (1995) Chemical pathology of acute demyelinating lesions and its correlation with disability. Ann Neurol 38: 901–909

    Article  PubMed  Google Scholar 

  45. Tzika AA, Ball WS, Vigneron DB et al (1993) Clinical proton MR spectroscopy of neurodegenerative disease in childhood. AJNR Am J Neuroradiol 1267–1281

    Google Scholar 

  46. Ross BD (1991) Biochemical considerations in-MRS: glutamate and glutamine; myo-inositol and related metabolites. NMR Biomed 4: 59–62

    Article  PubMed  CAS  Google Scholar 

  47. Murphy S (ed) (1993) Astrocytes: pharmacology and function. Academic, San Diego

    Google Scholar 

  48. Lien HH, Shapiro JL, Chan L (1990) Effects of hypernatremia on organic brain osmolytes. J Clin Invest 85: 1427–1435

    Article  PubMed  CAS  Google Scholar 

  49. Graf J, Guggino WB, Turnheim K (1993) Volume regulation in transporting epithelia. In: Lang F, Haussinger D (eds) Interactions in cell volume and cell function. Springer, Berlin Heidelberg New York, pp 67–117

    Google Scholar 

  50. Kimelberg HK, O’Connor ER, Kettenmann H (1993) Effect of swelling on glial cell function. In: Lang F, Haussinger D (eds) Interactions in cell volume and cell function. Springer, Berlin Heidelberg New York, pp 158–186

    Google Scholar 

  51. Laubenberger J, Haussinger D, Bayer S et al (1996) HIV-related metabolic abnormalities in the brain: depiction with proton MR spectroscopy with short echo times. Radiology 199: 805–810

    PubMed  CAS  Google Scholar 

  52. Brand A, Richter-Landsberg C, Leibfritz D (1993) Multinuclear NMR studies on the energy metabolism of glial and neuron cells. Dev Neurosci 15: 289–298

    Article  PubMed  CAS  Google Scholar 

  53. Falini A, Calabrese G, Filippi M et al (1998) Benign versus secondary-progressive multiple sclerosis: the potential role of proton MR spectroscopy in defining the nature of disability. AJNR Am J Neuroradiol 19: 223–229

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Italia

About this chapter

Cite this chapter

Morrissey, S.P. (2001). Magnetic Resonance Spectroscopy in Experimental Allergic Encephalomyelitis. In: Filippi, M., Arnold, D.L., Comi, G. (eds) Magnetic Resonance Spectroscopy in Multiple Sclerosis. Topics in Neuroscience. Springer, Milano. https://doi.org/10.1007/978-88-470-2109-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2109-9_5

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2164-8

  • Online ISBN: 978-88-470-2109-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics