Advertisement

Magnetic Resonance Spectroscopy in Experimental Allergic Encephalomyelitis

  • S. P. Morrissey
Part of the Topics in Neuroscience book series (TOPNEURO)

Abstract

Experimental allergic (autoimmune) encephalomyelitis (EAE) is widely regarded as the animal model of multiple sclerosis (MS). The main features shared by both conditions are female sex in EAE or female preponderance in MS, young adults, genetic susceptibility with major histocompatibility complex (MHC) association or non-MHC-associated, isolated attacks of the central nervous system (CNS), and histologically, evidence of inflammation, lymphocytic infiltrates, macrophage infiltration and microglia activation, demyelination, and apoptosis in the CNS. However, the pathogenic role of autoreactive T-cells which is crucial in EAE has not been convincingly demonstrated in MS patients, and the role of a restricted use of the T-cell receptor repertoire, a constant finding in EAE, is at best inconstant in MS. Moreover, the acute form of EAE more resembles perivenous encephalomyelitis (i.e., acute disseminated encephalomyelitis or postinfectious encephalomyelitis or postvaccinal myelitis). The latter condition was first recognized in the late nineteenth century in a few subjects who had received Pasteur’s rabies virus vaccine and developed thereafter a paralytic syndrome of the CNS due to an autoimmune hypersensitivity reaction [1]. This observation led in the first half of the twentieth century to the idea that a neurological autoimmune disease could be caused after injection of CNS material, brain or spinal cord, into animals [2].

Keywords

Multiple Sclerosis Multiple Sclerosis Patient Magnetic Resonance Spectroscopy Experimental Allergic Encephalomyelitis Multiple Sclerosis Lesion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Remlinger P (1928) Les paralysies dues au traitement antirabique. Ann Institut Pasteur 55 (Suppl): 35–68Google Scholar
  2. 2.
    Rivers TM, Sprunt DH, Berry GP (1933) Observations on attempts to produce acute disseminated encephalomyelitis in monkeys. J Exp Med 58: 39–53PubMedCrossRefGoogle Scholar
  3. 3.
    Storch MK, Stefferl A, Brehm U et al (1998) Autoimmunity to myelin oligodendrocyte glycoprotein in rats mimics the spectrum of multiple sclerosis pathology. Brain Pathol 8: 681–694PubMedCrossRefGoogle Scholar
  4. 4.
    Kornek B, Storch MK, Weissert R et al (2000) Multiple sclerosis and chronic autoimmune encephalomyelitis. Am J Pathol 157: 267–276PubMedCrossRefGoogle Scholar
  5. 5.
    Karlik SJ, Streijan G, Gilbert GG, Noseworthy JH (1986) NMR studies in experimen tal allergic encephalomyelitis (EAE): normalization of T1 and T2 with parenchymal cellular infiltration. Neurology 36: 1112–1114PubMedCrossRefGoogle Scholar
  6. 6.
    Hawkins CP, Mackenzie F, Tofts P et al (1991) Patterns of blood-brain barrier breakdown in inflammatory demyelination. Brain 114: 801–810PubMedCrossRefGoogle Scholar
  7. 7.
    Namer IJ, Steibel J, Poulet P et al (1993) Blood-brain barrier breakdown in MBP-specific T cell induced experimental allergic encephalomyelitis. Brain 116: 147–159PubMedCrossRefGoogle Scholar
  8. 8.
    Seeldrayers PA, Syha J, Morrissey SP et al (1993) Magnetic resonance imaging investigation of the blood-brain barrier damage in adoptive transfer experimental autoimmune encephalomyelitis. J Neuroimmunol 46: 199–206PubMedCrossRefGoogle Scholar
  9. 9.
    Morrissey SP, Stodal H, Zettl U et al (1996) Serial in vivo magnetic resonance imaging and its histological correlates in acute adoptive transfer EAE: quantification of inflammation and oedema. Brain 119: 239–248PubMedCrossRefGoogle Scholar
  10. 10.
    Dousset V, Grossmann RI, Ramer KN et al (1992) Experimental allergic encephalomyelitis and multiple sclerosis: lesion characterization with magnetization transfer imaging. Radiology 182: 483–491PubMedGoogle Scholar
  11. 11.
    Heide AC, Richards TL, Alvord EC Jr et al (1993) Diffusion imaging of experimental allergic encephalomyelitis. Magn Reson Med 29: 478–484PubMedCrossRefGoogle Scholar
  12. 12.
    Richards TL, Alvord EC, He Y et al (1995) Experimental allergic encephalomyelitis in non-human primates: diffusion imaging of acute and chronic brain lesions. Multiple Sclerosis 1: 109–117PubMedGoogle Scholar
  13. 13.
    Brenner RE, Munro PMG, Williams SCR et al (1993) The proton NMR spectrum in acute EAE: the significance of the change in the Cho:Cr ratio. Magn Reson Med 29: 737–745PubMedCrossRefGoogle Scholar
  14. 14.
    Brenner RE, Morrissey SP, Munro PMG et al (1992) The relationship between Gd-DTPA enhancement and the onset of proton MR spectral changes in EAE. Workshop, Advances in Proton Magnetic Spectroscopy of the Brain, St. Catherine’s College, Oxford, England, 18 December 1992Google Scholar
  15. 15.
    Morrissey SP, Brenner RE, Hawkins CP et al (1993) Gadolinium-enhanced MRI of the brain in acute EAE correlation of clinical and MRI findings. Meeting of the Association of British Neurologists, Keele University, Stoke-on-Trent, 15-16 April 1993Google Scholar
  16. 16.
    Richards TL, Alvord EC, Peterson J et al (1995) Experimental allergic encephalomyelitis in non-human primates: MRI and MRS may predict the type of brain damage. NMR Biomed 8: 49–58PubMedCrossRefGoogle Scholar
  17. 17.
    Arnold DL, Matthews PM, Francis GS et al (1992) Proton magnetic resonance spectroscopic imaging for metabolic characterization of demyelinating plaques. Ann Neurol 31: 235–241PubMedCrossRefGoogle Scholar
  18. 18.
    Davie CA, Hawkins CP, Barker GJ et al (1994) Serial proton magnetic resonance spectroscopy in acute multiple sclerosis lesions. Brain 117: 49–58PubMedCrossRefGoogle Scholar
  19. 19.
    Preece NE, Baker D, Butter C et al (1993) Experimental allergic encephalomyelitis raises betaine levels in the spinal cord of strain 13 guinea-pigs. NMR Biomed 6(3): 194–200PubMedCrossRefGoogle Scholar
  20. 20.
    Mcllwain H, Bachelard HS (1985) Biochemistry and the central nervous system, 5th edn. Churchill Livingstone, Edinburgh, pp 282–335Google Scholar
  21. 21.
    McKeever MP, Weir DG, Molloy A, Scott JM (1991) Betaine-homocysteine methyltransferase: organ distribution in man, pig and rat and subcellular distribution in the rat. Clin Sci 81: 551PubMedGoogle Scholar
  22. 22.
    Matthews PM, Francis G, Antel J, Arnold DL (1991) Proton magnetic resonance spectroscopy for metabolic characterization of plaques in multiple sclerosis (published erratum appears in Neurology 41: 1828). Neurology 41:1251–1256PubMedCrossRefGoogle Scholar
  23. 23.
    van Hecke P, Marchal G, Johannik K et al (1991) Human brain proton localized NMR spectroscopy in multiple sclerosis. Magn Reson Med 18: 199–206PubMedCrossRefGoogle Scholar
  24. 24.
    Miller DH, Austin SJ, Connelly A et al (1991) Proton nuclear magnetic resonance spectroscopy of an acute and chronic lesion in multiple sclerosis [letter]. Lancet 337: 58–59PubMedCrossRefGoogle Scholar
  25. 25.
    Bruhn H, Frahm J, Merboldt KD et al (1992) Multiple sclerosis in children: cerebral metabolic alterations monitored by localization proton magnetic resonance spectroscopy in vivo. Ann Neurol 32: 140–150PubMedCrossRefGoogle Scholar
  26. 26.
    D’Adamo AFJ, Yatsu FM (1966) Acetate metabolism in the nervous sytem. N-Acetyl-L-aspartic acid and the biosynthesis of brain lipids. J Neurochem 13: 961–965PubMedCrossRefGoogle Scholar
  27. 27.
    D’Adamo AFJ, Gidez LI, Yatsu FM (1968) Acetyl transport mechanism. Involvement of N-Acetyl-aspartic acid in de novo fatty acidic biosynthesis in the developing rat brain. Exp Brain Res 5: 267–273PubMedGoogle Scholar
  28. 28.
    Birken DL, Oldendorf WH (1989) N-acetyl-L-aspartic acid: a literature review of a compound prominent in 1H-NMR spectroscopic studies of the brain. Neurosci BiobehavRev 13: 23–31CrossRefGoogle Scholar
  29. 29.
    Patel TB, Clark JB (1979) Synthesis of N-acetyl-L-aspartate by rat brain mitochondria and its involvement in mitochondrial/cytosolic carbon transport. Biochem J 184:539–546PubMedGoogle Scholar
  30. 30.
    Bates TE, Stranward M, Keelan J et al (1996) Inhibition of N-acetylaspartate production: implications for 2H-MRS studies in vivo. Neuroreport 7: 1397–1400PubMedCrossRefGoogle Scholar
  31. 31.
    Simmons ML, Frondoza CG, Coyle JT (1991) Immunocytochemical localization of Nacetyl-aspartate with monoclonal antibodies. Neuroscience 45: 37–45PubMedCrossRefGoogle Scholar
  32. 32.
    Urenjak J, Williams SR, Gadian DG, Noble M (1993) Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types. J Neurosci 13: 981–989PubMedGoogle Scholar
  33. 33.
    Bhakoo KK, Pearce D (2000) In vitro expression of N-acetyl aspartate by oligodendrocytes. J Neurochem 74: 254–262PubMedCrossRefGoogle Scholar
  34. 34.
    Davie CA, Silver NC, Barker GJ et al (1999) Does the extent of axonal loss and demyelination from chronic lesions in multiple sclerosis correlate with the clinical subgroup? J Neurol Neurosurg Psychiatry 67: 710–715PubMedCrossRefGoogle Scholar
  35. 35.
    Davies SEC, Newcombe J, Williams SR et al (1995) High resolution proton NMR spectroscopy of multiple sclerosis lesions. J Neurochem 64: 742–748PubMedCrossRefGoogle Scholar
  36. 36.
    Cadoux-Hudson TA, Kermode A, Rajagopalan B et al (1991) Biochemical changes within a multiple sclerosis plaque in vivo. J Neurol Neurosurg Psychiatry 54:1004–1006PubMedCrossRefGoogle Scholar
  37. 37.
    Husted CA, Goodkin DS, Hugg JW et al (1994) Biochemical alterations in multiple sclerosis lesions and normal-appearing white matter detected by in vivo 31P and 1H spectroscopic imaging. Ann Neurol 36: 157–165PubMedCrossRefGoogle Scholar
  38. 38.
    Forno LS, Rivera L (1975) Central pontine myelinolysis. J Neuropathol Exp Neurol 34: 77Google Scholar
  39. 39.
    Powers JM, McKeever PE (1976) Central pontine myelinolysis. An ultrastructural and elemental study. J Neurol Sci 29: 65–81PubMedCrossRefGoogle Scholar
  40. 40.
    Tofts PB (1994) Metabolite concentrations in the developing brain estimated with proton MR spectroscopy. J Magn Reson Imaging 4: 674–680CrossRefGoogle Scholar
  41. 41.
    Kato T, Nishina M, Matsushita K et al (1997) Neuronal maturation and N-acetyl-Laspartic acid development in human fetal and child brains. Brain Dev 19: 131–133PubMedCrossRefGoogle Scholar
  42. 42.
    McDonald WI, Miller DH, Barnes D (1992) The pathological evolution of multiple sclerosis. Neuropathol Appl Neurobiol 18: 319–334PubMedCrossRefGoogle Scholar
  43. 43.
    Ingles BA, Brenner RE, Munro PMG et al (1992) Measurement of proton NMR relaxation times for NAA, Cr, and Cho in acute EAE. In: Proceedings of the Eleventh Annual Meeting of the Society for Magnetic Resonance in Medicine. Book of abstracts: Works in progress, p 2162Google Scholar
  44. 44.
    De Stefano N, Matthews PM, Antel J et al (1995) Chemical pathology of acute demyelinating lesions and its correlation with disability. Ann Neurol 38: 901–909PubMedCrossRefGoogle Scholar
  45. 45.
    Tzika AA, Ball WS, Vigneron DB et al (1993) Clinical proton MR spectroscopy of neurodegenerative disease in childhood. AJNR Am J Neuroradiol 1267–1281Google Scholar
  46. 46.
    Ross BD (1991) Biochemical considerations in-MRS: glutamate and glutamine; myo-inositol and related metabolites. NMR Biomed 4: 59–62PubMedCrossRefGoogle Scholar
  47. 47.
    Murphy S (ed) (1993) Astrocytes: pharmacology and function. Academic, San DiegoGoogle Scholar
  48. 48.
    Lien HH, Shapiro JL, Chan L (1990) Effects of hypernatremia on organic brain osmolytes. J Clin Invest 85: 1427–1435PubMedCrossRefGoogle Scholar
  49. 49.
    Graf J, Guggino WB, Turnheim K (1993) Volume regulation in transporting epithelia. In: Lang F, Haussinger D (eds) Interactions in cell volume and cell function. Springer, Berlin Heidelberg New York, pp 67–117Google Scholar
  50. 50.
    Kimelberg HK, O’Connor ER, Kettenmann H (1993) Effect of swelling on glial cell function. In: Lang F, Haussinger D (eds) Interactions in cell volume and cell function. Springer, Berlin Heidelberg New York, pp 158–186Google Scholar
  51. 51.
    Laubenberger J, Haussinger D, Bayer S et al (1996) HIV-related metabolic abnormalities in the brain: depiction with proton MR spectroscopy with short echo times. Radiology 199: 805–810PubMedGoogle Scholar
  52. 52.
    Brand A, Richter-Landsberg C, Leibfritz D (1993) Multinuclear NMR studies on the energy metabolism of glial and neuron cells. Dev Neurosci 15: 289–298PubMedCrossRefGoogle Scholar
  53. 53.
    Falini A, Calabrese G, Filippi M et al (1998) Benign versus secondary-progressive multiple sclerosis: the potential role of proton MR spectroscopy in defining the nature of disability. AJNR Am J Neuroradiol 19: 223–229PubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2001

Authors and Affiliations

  • S. P. Morrissey

There are no affiliations available

Personalised recommendations