Axonal Loss in Multiple Sclerosis

  • C. Bjartmar
  • B. D. Trapp
Part of the Topics in Neuroscience book series (TOPNEURO)


Multiple sclerosis (MS) lesions are characterized by inflammation, demyelination, loss of oligodendrocytes, reactive astrogliosis, and axonal injury. Traditionally, inflammation and demyelination have been emphasized as the two major pathological events in MS. Accordingly, MS research has focused on damage to oligodendrocytes and myelin, and on the roles of T-cells and macrophages, during demyelination. In contrast, axonal injury in MS has received less attention both clinically and in research. Axonal pathology, however, has been recognized as a part of MS pathology for more than a century [1]. Charcot, for example, described MS lesions in terms of demyelination and a relative sparing of axons [2]. Recently, the identification of primary axonal pathology in mice with myelin protein gene mutations, pathological evidence for axonal loss in MS brains, and magnetic resonance imaging (MRI) evidence of changes in MS brains, have generated new focus on the role of axons in the pathogenesis of MS. It is now generally accepted that axonal loss plays an important role in the irreversible functional decline experienced by many MS patients [3–8]. This chapter discusses current knowledge regarding the extent, timing, and clinical significance of axonal damage in the pathogenesis of MS.


Multiple Sclerosis Expand Disability Status Scale Axonal Injury Axonal Loss Multiple Sclerosis Brain 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kornek B, Lassman H (1999) Axonal pathology in multiple sclerosis. A historical note. Brain Pathol 9: 651–656PubMedCrossRefGoogle Scholar
  2. 2.
    Charcot M (1868) Histologic de la sclérose en plaques. Gazette Hopitaux 141: 554–558Google Scholar
  3. 3.
    De Stefano N, Matthews PM, Fu L et al (1998) Axonal damage correlates with disability in patients with relapsing-remitting multiple sclerosis. Results of a longitudinal magnetic resonance spectroscopy study. Brain 121:1469–1477PubMedCrossRefGoogle Scholar
  4. 4.
    Trapp BD, Peterson I, Ransohoff RM et al (1998) Axonal transection in the lesions of multiple sclerosis. N Engl J Med 338: 278–285PubMedCrossRefGoogle Scholar
  5. 5.
    Losseff NA, Miller DH (1998) Measures of brain and spinal cord atrophy in multiple sclerosis. J Neurol Neurosurg Psychiatry 64: S102–S105PubMedGoogle Scholar
  6. 6.
    Bjartmar C, Yin X, Trapp BD (1999) Axonal pathology in myelin disorders. J Neurocytol 28: 383–395PubMedCrossRefGoogle Scholar
  7. 7.
    Noseworthy JH (1999) Progress in determining the causes and treatment of multiple sclerosis. Nature 399(Suppl): A40–A47PubMedCrossRefGoogle Scholar
  8. 8.
    Trapp BD, Ransohoff RM, Fisher E, Rudick RA (1999) Neurodegeneration in multiple sclerosis: relationship to neurological disability. Neuroscientist 5: 48–57CrossRefGoogle Scholar
  9. 9.
    Ferguson B, Matyszak MK, Esiri MM, Perry VH (1997) Axonal damage in acute multiple sclerosis lesions. Brain 120: 393–399PubMedCrossRefGoogle Scholar
  10. 10.
    Koo EH, Sisodia SS, Archer DR et al (1990) Precursor of amyloid protein in Alzheimer disease undergoes fast anterograde axonal transport. Proc Natl Acad Sci USA 87:1561–1565PubMedCrossRefGoogle Scholar
  11. 11.
    Bjartmar C, Kidd G, Mörk S et al (2000) Neurological disability correlates with spinal cord axonal loss and reduced N-acetyl-aspartate in chronic multiple sclerosis patients. Ann Neurol (in press)Google Scholar
  12. 12.
    Lovas G, Szilagyi N, Majtenyi K et al (2000) Axonal changes in chronic demyelinated cervical spinal cord plaques. Brain 123: 308–317PubMedCrossRefGoogle Scholar
  13. 13.
    Brownell B, Hughes JT (1962) The distribution of plaques in the cerebrum n multiple sclerosis. J Neurol Neurosurg Psychiatry 25: 315–320PubMedCrossRefGoogle Scholar
  14. 14.
    Lumsden CE (1970) The neuropathology of multiple sclerosis. In: Vinken PJ, Bruyn GW (eds) Handbook of clinical neurology, vol 9. North-Holland, Amsterdam, pp 217–309Google Scholar
  15. 15.
    Kidd D, Barkhof F, McConnell R et al (1999) Cortical lesions in multiple sclerosis. Brain 122: 17–26PubMedCrossRefGoogle Scholar
  16. 16.
    Rao SM, Leo GJ, Bernardin L, Unverzagt F (1991) Cognitive dysfunction in multiple sclerosis. I. Frequency, patterns, and prediction. Neurology 41:685–691PubMedCrossRefGoogle Scholar
  17. 17.
    Ron MA, Callanan MM, Warrington EK (1991) Cognitive abnormalities in multiple sclerosis: a psychometric and MRI study. Psychol Med 21:59–68PubMedCrossRefGoogle Scholar
  18. 18.
    Beatty WW, Paul RH, Wilbanks SL et al (1995) Identifying multiple sclerosis patients with mild or global cognitive impairment using the Screening Examination for Cognitive Impairment (SEFCI). Neurology 45: 718–723PubMedCrossRefGoogle Scholar
  19. 19.
    Foong J, Rozewics L, Davie CA et al (1999) Correlates of executive function in multiple sclerosis: the use of magnetic resonance spectroscopy as an index of focal pathology. J Neuropsychol Clin Neurosci 11: 45–50Google Scholar
  20. 20.
    Damian MS, Schilling G, Bachmann G et al (1994) White matter lesions and cognitive deficits: relevance of lesion pattern? Acta Neurol Scand 90: 430–436PubMedCrossRefGoogle Scholar
  21. 21.
    Peterson JW, Bo L, Chang A, Mork S, Trapp BD (2000) Neuropathology of cortical lesions in multiple sclerosis [abstract]. J Neurochem 74: S13Google Scholar
  22. 22.
    Ganter P, Prince C, Esiri MM (1999) Spinal cord axonal loss in multiple sclerosis: a post-mortem study. Neuropathol Appl Neurobiol 25: 459–467PubMedCrossRefGoogle Scholar
  23. 23.
    Evangelou N, Esiri MM, Smith S et al (2000) Quantitative pathological evidence for axonal loss in normal appearing white matter in multiple sclerosis. Ann Neurol 47: 391–395PubMedCrossRefGoogle Scholar
  24. 24.
    Kidd D, Thorpe JW, Thompson AJ et al (1993) Spinal cord MRI using multi-array coils and fast spin echo. II. Findings in multiple sclerosis. Neurology 43: 2632–2637PubMedCrossRefGoogle Scholar
  25. 25.
    Losseff NA, Webb SL, O’Riordan JI et al (1996) Spinal cord atrophy and disability in multiple sclerosis. A new reproducible and sensitive MRI method with potential to monitor disease progression. Brain 119:701–708PubMedCrossRefGoogle Scholar
  26. 26.
    Losseff NA, Wang L, Lai HM et al (1996) Progressive cerebral atrophy in multiple sclerosis. A serial MRI study. Brain 119: 2009–2019PubMedCrossRefGoogle Scholar
  27. 27.
    Davie CA, Barker GJ, Webb S et al (1995) Persistent functional deficit in multiple sclerosis and autosomal dominant cerebellar ataxia is associated with axon loss. Brain 118:1583–1592PubMedCrossRefGoogle Scholar
  28. 28.
    Stevenson VL, Miller DH (1999) Magnetic resonance imaging in the monitoring of disease progression in multiple sclerosis. Multiple Sclerosis 5: 268–272PubMedGoogle Scholar
  29. 29.
    Filippi M, Colombo B, Rovaris M et al (1997) A longitudinal magnetic resonance imaging study of the cervical cord in multiple sclerosis. J Neuroimaging 7: 78–80PubMedGoogle Scholar
  30. 30.
    Simon JH, Jacobs LD, Campion MK et al (1999) A longitudinal study of brain atrophy in relapsing multiple sclerosis. Neurology 53: 139–148PubMedCrossRefGoogle Scholar
  31. 31.
    Rudick RA, Fisher E, Lee JC et al (1999) Use of the brain parenchymal fraction to measure whole brain atrophy in relapsing-remitting MS. Multiple Sclerosis Collaborative Research Group. Neurology 53: 1698–1704PubMedCrossRefGoogle Scholar
  32. 32.
    Barnes D, Munro PMG, Youl BD et al (1991) The longstanding MS lesion. Brain 114:1271–1280PubMedCrossRefGoogle Scholar
  33. 33.
    Hohlfeld R (1997) Biotechnological agents for the immunotherapy of multiple sclerosis. Principles, problems and perspectives. Brain 120: 865–916PubMedCrossRefGoogle Scholar
  34. 34.
    Bell JI, Lathrop GM (1996) Multiple loci for multiple sclerosis. Nat Genet 13: 377–378PubMedCrossRefGoogle Scholar
  35. 35.
    Ebers GC, Dyment DA (1998) Genetics of multiple sclerosis. Semin Neurol 18: 295–299PubMedCrossRefGoogle Scholar
  36. 36.
    Rivera-Quinones C, McGavern D, Schmelzer JD et al (1998) Absence of neurological deficits following extensive demyelination in a class I-deficient murine model of multiple sclerosis. Nat Med 4:187–193PubMedCrossRefGoogle Scholar
  37. 37.
    Njenga MK, Murray PD, McGavern D et al (1999) Absence of spontaneous central nervous system remyelination in class II-deficient mice infected with Theiler’s virus. J Neuropathol Exp Neurol 58: 78–91PubMedCrossRefGoogle Scholar
  38. 38.
    Giese KP, Martini R, Lemke G et al (1992) Mouse P0 gene disruption leads to hypomyelination, abnormal expression of recognition molecules, and degeneration of myelin and axons. Cell 71: 565–576PubMedCrossRefGoogle Scholar
  39. 39.
    Anzini P, Neuberg DH, Schachner M, et al (1997) Structural abnormalities and deficient maintenance of peripheral nerve myelin in mice lacking the gap junction protein connexin 32. J Neurosci 17: 4545–4551PubMedGoogle Scholar
  40. 40.
    Yin X, Crawford TO, Griffin JW et al (1998) Myelin-associated glycoprotein is a myelin signal that modulates the caliber of myelinated axons. J Neurosci 18: 1953–1962PubMedGoogle Scholar
  41. 41.
    Griffiths I, Klugmann M, Anderson T et al (1998) Axonal swellings and degeneration in mice lacking the major proteolipid of myelin. Science 280: 1610–1613PubMedCrossRefGoogle Scholar
  42. 42.
    Sahenk Z, Chen L, Mendell JR (1999) Effects of PMP22 duplication and deletions on the axonal cytoskeleton. Ann Neurol 45: 16–24PubMedCrossRefGoogle Scholar
  43. 43.
    Scherer S (1999) Axonal pathology in demyelinating diseases. Ann Neurol 45: 6–7PubMedCrossRefGoogle Scholar
  44. 44.
    Anderson TJ, Schneider A, Barrie JA et al (1998) Late-onset neurodegeneration in mice with increased dosage of the proteolipid protein gene. J Comp Neurol 394: 506–519PubMedCrossRefGoogle Scholar
  45. 45.
    Hanemann CO, Muller HW (1998) Pathogenesis of Charcot-Marie-Tooth IA (CMTIA) neuropathy. Trends Neurosci 21: 282–286PubMedCrossRefGoogle Scholar
  46. 46.
    van Walderveen MAA, Kamphorst W, Scheltens P et al (1998) Histopathologic correlate of hypointense lesions on Tl-weighted spin-echo MRI in multiple sclerosis. Neurology 50: 1282–1288PubMedCrossRefGoogle Scholar
  47. 47.
    van Waesberghe JHTM, Kamphorst W, De Groot CJA et al (1999) Axonal loss in multiple sclerosis lesions: magnetic resonance imaging insights into substrates of disability. Ann Neurol 46:747–754PubMedCrossRefGoogle Scholar
  48. 48.
    Bruck W, Bitsch A, Kolenda H et al (1997) Inflammatory central nervous system demyelination: correlation of magnetic resonance imaging findings with lesion pathology. Ann Neurol 42: 783–793PubMedCrossRefGoogle Scholar
  49. 49.
    Matthews PM, De Stefano N, Narayanan S et al (1998) Putting magnetic resonance spectroscopy studies in context: axonal damage and disability in multiple sclerosis. Semin Neurol 18: 327–336PubMedCrossRefGoogle Scholar
  50. 50.
    Birken DL, Oldendorf WH (1989) N-acetyl-L-aspartic acid: a literature review of a compound prominent in 1H-NMR spectroscopic studies of brain. Neurosci Biobehav Rev 13:23–31PubMedCrossRefGoogle Scholar
  51. 51.
    Moffett JR, Namboodiri MAA, Cangro CB, Neale JH (1991) Immunohistochemical localization of N-acetylaspartate in rat brain. Neuroreport 2: 131–134PubMedCrossRefGoogle Scholar
  52. 52.
    Simmons ML, Frondoza CG, Coyle JT (1991) Immunocytochemical localization of Nacetyl-aspartate with monoclonal antibodies. Neuroscience 45: 37–45PubMedCrossRefGoogle Scholar
  53. 53.
    Patel TB, Clark JB (1979) Synthesis of N-acetyl-L-aspartate by rat brain mitochondria and involvement in mitochondrial/cytosolic carbon transport. Biochem J 184: 539–546PubMedGoogle Scholar
  54. 54.
    Truckenmiller ME, Namboodiri MAA, Brownstein MJ, Neale JH (1985) N-acetylation of L-aspartate in the nervous system: differential distribution of a specific enzyme. J Neurochem 45: 1658–1662PubMedCrossRefGoogle Scholar
  55. 55.
    Clarke DD, Greenfield S, Dicker E et al (1975) A relationship of N-acetyl-L-aspartate biosynthesis to neuronal protein synthesis. J Neurochem 24: 479–485PubMedCrossRefGoogle Scholar
  56. 56.
    Cangro CB, Namboodiri MA, Sklar LA et al (1987) Immunohistochemistry and biosynthesis of N-acetylaspartylglutamate in spinal sensory ganglia. J Neurochem 49: 1579–1588PubMedCrossRefGoogle Scholar
  57. 57.
    Lee JH, Arcinue E, Ross BD (1994) Brief report: organic osmolytes in the brain of an infant with hypernatremia. N Engl J Med 331: 439–442PubMedCrossRefGoogle Scholar
  58. 58.
    Graham GD, Blamire AM, Howseman AM et al (1992) Proton magnetic resonance spectroscopy of cerebral lactate and other metabolites in stroke patients. Stroke 23:333–340PubMedCrossRefGoogle Scholar
  59. 59.
    Pioro E, Antel JP, Cashman NR, Arnold DL (1994) Detection of cortical neuron loss in motor neuron disease by proton magnetic resonance spectroscopic imaging in vivo. Neurology 44: 1933–1938PubMedCrossRefGoogle Scholar
  60. 60.
    Arnold DL, Reiss GT, Matthews PM et al (1994) Use of proton magnetic resonance spectroscopy for monitoring disease progression in multiple sclerosis. Ann Neurol 36:76–82PubMedCrossRefGoogle Scholar
  61. 61.
    De Stefano N, Matthews PM, Arnold DL (1995) Reversible decreases in AT-acetylaspartate after acute brain injury. Magn Reson Med 34: 721–727PubMedCrossRefGoogle Scholar
  62. 62.
    Narayana PA, Doyle TJ, Dejian L, Wolinsky JS (1998) Serial proton magnetic resonance spectroscopic imaging, contrast-enhanced magnetic resonance imaging, and quantitative lesion volumetry in multiple sclerosis. Ann Neurol 43: 56–71PubMedCrossRefGoogle Scholar
  63. 63.
    Rango M, Spagnoli D, Tomei G et al (1995) Central nervous system trans-synaptic effects of acute axonal injury: a 1H magnetic resonance spectroscopy study. Magn Reson Med 33: 595–600PubMedCrossRefGoogle Scholar
  64. 64.
    Waegh SM de, Lee VM-Y, Brady ST (1992) Local modulation of neurofilament phosphorylation, axonal caliber, and slow axonal transport by myelinating Schwann cells. Cell 68: 451–463PubMedCrossRefGoogle Scholar
  65. 65.
    Clark JB (1998) N-acetyl aspartate: a marker for neuronal loss or mitochondrial dysfunction. Dev Neurosci 20: 271–276PubMedCrossRefGoogle Scholar
  66. 66.
    Saragea M, Clopotaru M, Sica M et al (1965) Biochemical changes occurring in animals with experimental allergic encephalomyelitis. Med Pharmacol Exp 13: 74–80Google Scholar
  67. 67.
    Brenner RE, Munro PM, Williams SC et al (1993) The proton NMR spectrum in acute EAE: the significance of the change in the Cho:Cr ratio. Magn Reson Med 29: 737–745PubMedCrossRefGoogle Scholar
  68. 68.
    Rudick RA, Goodman A, Herndon RM, Panitch HS (1999) Selecting relapsing remitting multiple sclerosis patients for treatment: the case for early treatment. J Neuroimmunol 98: 22–28PubMedCrossRefGoogle Scholar
  69. 69.
    Lloyd KG (1977) CNS compensation to dopamine neuron loss in Parkinson’s disease. Adv Exp Med Biol 90: 255–266PubMedGoogle Scholar
  70. 70.
    Bradley WG (1987) Recent views on amyotrophic lateral sclerosis with emphasis on electrophysiological studies. Muscle Nerve 10: 490–502PubMedCrossRefGoogle Scholar
  71. 71.
    McFarland HF, Frank JA, Albert PS et al (1992) Using gadolinium-enhanced magnetic resonance imaging lesions to monitor disease activity in multiple sclerosis. Ann Neurol 32:758–766PubMedCrossRefGoogle Scholar
  72. 72.
    Mews I, Bergmann M, Bunkowski S et al (1998) Oligodendrocyte and axon pathology in clinically silent multiple sclerosis lesions. Multiple Sclerosis 4: 55–62PubMedGoogle Scholar
  73. 73.
    Bostock H, Sears TA (1978) The internodal axon membrane: electrical excitability and continuous conduction in segmental demyelination. J Physiol (Lond) 280: 273–301Google Scholar
  74. 74.
    Foster RE, Whalen CC, Waxman SG (1980) Reorganization of the axon membrane in demyelinated peripheral nerve fibers: morphological evidence. Science 210: 661–663PubMedCrossRefGoogle Scholar
  75. 75.
    Felts PA, Baker TA, Smith KJ (1997) Conduction in segmentally demyelinated mammalian central axons. J Neurosci 17:7267–7277PubMedGoogle Scholar
  76. 76.
    Lublin FD, Reingold SC (1996) Defining the clinical course of multiple sclerosis: results of an international survey. Neurology 46: 907–911PubMedCrossRefGoogle Scholar
  77. 77.
    Rudick RA, Cohen JA, Weinstock-Guttman B et al (1997) Management of multiple sclerosis. N Engl J Med 337: 1604–1611PubMedCrossRefGoogle Scholar
  78. 78.
    Waxman SG (1998) Demyelinating diseases — new pathological insights, new therapeutic targets. N Engl J Med 338: 223–225Google Scholar
  79. 79.
    Gonen O, Catalaa I, Babb JS et al (2000) Total brain N-acetylaspartate. A new measure of disease load in MS. Neurology 54: 15–19PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2001

Authors and Affiliations

  • C. Bjartmar
  • B. D. Trapp

There are no affiliations available

Personalised recommendations