Overview of Magnetic Resonance Studies in Other Neurological Conditions

  • A. Falini
Part of the Topics in Neuroscience book series (TOPNEURO)


Since the beginning, magnetic resonance spectroscopy (MRS) has played a major role in the field of clinical neurology. The difficulty in accessing brain tissue during direct biopsy procedures, due to its peculiar anatomic protection (skull and meningeal sheaths), encouraged the validation of this potentially noninvasive technique in the study of normal and diseased central nervous system (CNS). The high concentration of hydrogenate compounds in the brain tissue facilitated the adoption of proton MRS, a technique able to provide high enough resolution to distinguish among different cellular populations and anatomic structures of the CNS. Initial research focused on the main neurological conditions, such as tumors, vascular diseases, demyelinating diseases, and epilepsy. During the following years, most of the pathological entities affecting the CNS were investigated. The popularity of neurospectroscopy has varied, ranging from periods when it was enthusiastically considered as an extraordinarily powerful tool able to replace brain biopsy or nuclear medicine invasive procedures, to periods when it was seen as a technique devoid of clinical utility, to be confined to research laboratories.


Amyotrophic Lateral Sclerosis Temporal Lobe Epilepsy Amyotrophic Lateral Sclerosis Patient Motor Neuron Disease Magnetic Resonance Spectroscopy Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bruhn H, Frahm J, Gyngell ML et al (1989) Noninvasive differentiation of tumors with use of localized HI-MR spectroscopy in vivo: initial experience in patients with cerebral tumors. Radiology 127: 541–548Google Scholar
  2. 2.
    Bruhn H, Michaelis T, Merborldt KD et al (1992) On the interpretation of proton NMR spectra from brain tumours in vivo and in vitro. NMR Biomed 5: 253–258PubMedCrossRefGoogle Scholar
  3. 3.
    Demaerel P, Johannik K, van Hecke P et al (1991) Localized HI-MR spectroscopy in fifty cases of newly diagnosed intracranial tumors. J Comput Assist Tomogr 15: 67–76PubMedCrossRefGoogle Scholar
  4. 4.
    Nagendank W, Sauter R, Brown TR et al (1996) Proton MR spectroscopy in patients with glial tumors: a multicenter study. J Neurosurg 84: 449–458CrossRefGoogle Scholar
  5. 5.
    Frahm J, Bruhn H, Hanicke W et al (1991) Localized proton NMR spectroscopy of brain tumors using short-echo time STEAM sequences. J Comput Assist Tomogr 5: 915–922CrossRefGoogle Scholar
  6. 6.
    Alger JR, Frank JA, Bizzi A et al (1990) Metabolism of human gliomas: assessment with HI-MR spectroscopy and F fluorodeoxyglucose PET. Radiology 177:633–641PubMedGoogle Scholar
  7. 7.
    Luyten PR, Marien AJH, Heindel W et al (1990) Metabolic imaging of patients with intracranial tumors: HI-MR spectroscopic imaging and PET. Radiology 176:791–799PubMedGoogle Scholar
  8. 8.
    Heindell W, Herholz K, Kugel H et al (1992) Combined HI-MR spectroscopic imaging and F-18 FDG-PET demonstrate metabolic states that imply malignancy in human gliomas. Proceedings of the 11th Annual meeting of the Society of Magnetic Resonance in Medicine, Berlin, p 51Google Scholar
  9. 9.
    Kugel H, Heindel W, Ernestus R-I et al (1992) Spectral patterns detected with localized H1-MR spectroscopy. Radiology 183: 701–709PubMedGoogle Scholar
  10. 10.
    Preul MC, Caramanos Z, Collins DL et al (1996) Accurate non-invasive diagnosis of human brain tumors by using proton magnetic resonance spectroscopy. Nat Med 2:323–325PubMedCrossRefGoogle Scholar
  11. 11.
    Falini A, Calabrese G, Origgi D et al (1996) Proton magnetic resonance spectroscopy (1H MRS) and intracranial tumors: clinical perspectives. J Neurol 243: 706–714PubMedCrossRefGoogle Scholar
  12. 12.
    Kuesel AC, Sutherland GR, Halliday W, Smith ICP (1994) 1H-MRS of high grade astrocytomas: mobile lipid accumulation in necrotic tissue. NMR Biomed 7: 149–155PubMedCrossRefGoogle Scholar
  13. 13.
    Nelson SJ (1999) Imaging of brain tumors after therapy. Neuroimaging Clin North Am 9: 801–819Google Scholar
  14. 14.
    Somorjai RL, Dolenko B, Nikulin AK et al (1996) Classification of 1H MR spectra of human brain neoplasms: the influence of preprocessing and computerized consensus diagnosis on classification accuracy. J Magn Reson Imaging 6: 437–444PubMedCrossRefGoogle Scholar
  15. 15.
    Tedeschi G, Lundbom N, Raman R et al (1997) Increased choline signal coinciding with malignant degeneration of cerebral gliomas: a serial magnetic resonance spectroscopy imaging study. J Neurosurg 87: 516–524PubMedCrossRefGoogle Scholar
  16. 16.
    Nelson SJ, Vigneron DB, Dillon W (1999) Assessment of brain tumors using volume MRI and MRSI. NMR Biomed 12: 123–138PubMedCrossRefGoogle Scholar
  17. 17.
    Wald AA, Day MR, Nelson SJ et al (1997) Response of glioblastoma multiforme to brachytherapy detected by 3D proton magnetic resonance spectroscopic imaging. J Neurosurg 87: 525–534PubMedCrossRefGoogle Scholar
  18. 18.
    Nelson SJ, Huhn S, Vigneron DB et al (1997) Volume MRI and MRSI techniques for the quantitation of treatment response in brain tumors: presentation of a detailed case study. J Magn Reson Imaging 7: 1146–1152PubMedCrossRefGoogle Scholar
  19. 19.
    Gill SS, Thomas DGT, van Bruggen N et al (1990) Proton MR spectroscopy of intracranial tumours: in vivo and in vitro studies. J Comput Assist Tomogr 14: 497–504PubMedCrossRefGoogle Scholar
  20. 20.
    Ott D, Henning J, Ernst T (1993) Human brain tumors: assessment with in vivo proton spectroscopy. Radiology 186: 745–752PubMedGoogle Scholar
  21. 21.
    Howe FA, Maxwell RJ, Saunders DE et al (1993) Proton spectroscopy in vivo. Magn Reson Q 9: 31–59PubMedGoogle Scholar
  22. 22.
    Kinoshita Y, Kajiwara H, Yokota A, Koga Y (1994) Proton magnetic resonance spectroscopy of brain tumors: an in vitro study. Neurosurgery 35: 606–613PubMedCrossRefGoogle Scholar
  23. 23.
    Poptani H, Gupta RK, Pandey R et al (1995) Characterization of intracranial mass lesions with in vivo proton MR spectroscopy. Am J Neuroradiol 16: 1593–1603PubMedGoogle Scholar
  24. 24.
    Rand SD, Prost R, Haughton V et al (1997) Accuracy of single-voxel proton MR spectroscopy in distinguishing neoplastic from nonneoplastic brain lesions. Am J Neuroradiol 18: 1695–1704PubMedGoogle Scholar
  25. 25.
    Adamson AJ, Rand SD, Prost RW et al (1998) Focal brain lesions: effect of single-voxel proton MR spectroscopic findings on treatment decisions. Radiology 209: 73–78PubMedGoogle Scholar
  26. 26.
    Krouwer HG, Kim TA, Rand SD et al (1988) Single-voxel proton MR spectroscopy of nonneoplastic brain lesions suggestive of a neoplasm. Am J Neuroradiol 19: 1695–1703Google Scholar
  27. 27.
    Kim SH, Chang KH, Song IC, et al (1997) Brain abscess and brain tumor: discrimination with in vivo H-1 MR spectroscopy. Radiology 204:239–245PubMedGoogle Scholar
  28. 28.
    Chang KH, Song IC, Kim SH et al (1998) In vivo single-voxel proton MR spectroscopy in intracranial cystic masses. Am J Neuroradiol 19: 401–405PubMedGoogle Scholar
  29. 29.
    Grand S, Passaro G, Ziegler A et al (1999) Necrotic tumor versus brain abscess: importance of amino acids detected at 1H MR spectroscopy-initial results. Radiology 213:785–793PubMedGoogle Scholar
  30. 30.
    Simmons ML, Frondoza CG, Coyle JT (1991) Immunocytochemical localization of Nacetyl-aspartate with monoclonal antibodies. Neuroscience 45: 37–45PubMedCrossRefGoogle Scholar
  31. 31.
    Nadler JV, Cooper JR (1972) N-Acetyl-l-aspartic acid content of human neural tumors and bovine peripheral nervous tissue. J Neurochem 19: 313–319PubMedCrossRefGoogle Scholar
  32. 32.
    Hanstock CC, Rothman DL, Prichard JW et al (1988) Spatially localized 1H NMR spectra of metabolite in the human brain. Proc Natl Acad Sci 85:1821–1825PubMedCrossRefGoogle Scholar
  33. 33.
    Bowen CB, Block RE, Sanchez-Ramos J et al (1995) Proton MR spectroscopy of the brain in 14 patients with Parkinson disease. Am J Neuroradiol 16: 61–68PubMedGoogle Scholar
  34. 34.
    Davie CA, Wenning GK, Barker GJ et al (1995) Differentiation of multiple system atrophy from idiopathic Parkinson’s disease using proton magnetic resonance spectroscopy. Ann Neurol 37: 204–210PubMedCrossRefGoogle Scholar
  35. 35.
    Tedeschi G, Bertolino A, Massaquoi SG et al (1996) Proton magnetic resonance spectroscopic imaging in patients with cerebellar degeneration. Ann Neurol 39: 71–78PubMedCrossRefGoogle Scholar
  36. 36.
    Otsuka H, Harada M, Hieda M et al (1996) Magnetic resonance studies of dentatorubro-pallido-luysian atrophy: correlation with clinical severity and age of onset. No ToShinkei 48:818–823Google Scholar
  37. 37.
    Miller BL, Moats RA, Shonk TK et al (1993) Alzheimer disease: depiction of increased cerebral myo-inositol with proton MR spectroscopy. Radiology 187: 433–437PubMedGoogle Scholar
  38. 38.
    Shonk TK, Moats RA, Gifford P et al (1995) Probable Alzheimer disease: diagnosis with proton MR spectroscopy. Radiology 195: 65–72PubMedGoogle Scholar
  39. 39.
    MacKay S, Ezekiel F, Di Sclafani V et al (1996) Alzheimer disease and subcortical ischemic vascular dementia: evaluation by combining MR imaging segmentation and H-1 MR spectroscopic imaging. Radiology 198: 537–545PubMedGoogle Scholar
  40. 40.
    Schuff N, Amend DL, Meyeroff DJ et al (1998) Alzheimer disease: quantitative H-1 MR spectroscopic imaging of frontoparietal brain. Radiology 207: 91–102PubMedGoogle Scholar
  41. 41.
    Schuff N, Amend DL, Ezekiel F et al (1997) Changes of hippocampal N-acetylaspartate and volume in Alzheimer’s disease: a proton magnetic resonance spectroscopic imaging and MRI study. Neurology 49: 1513–1521PubMedCrossRefGoogle Scholar
  42. 42.
    Ernst T, Chang L, Melchor R, Mehringer CM (1997) Frontotemporal dementia and early Alzheimer disease: differentiation with frontal lobe H-1 MR. Radiology 203:829–836PubMedGoogle Scholar
  43. 43.
    Goodin DS, Rowley HA, Olney RK (1988) Magnetic resonance imaging in amyotrophic lateral sclerosis. Ann Neurol 23:418–420PubMedCrossRefGoogle Scholar
  44. 44.
    Kato S, Hayashi H, Yagishita A (1993) Involvement of the frontotemporal lobe and limbic system in amyotrophic lateral sclerosis: as assessed by serial computed tomography0 and magnetic resonance imaging. J Neurol Sci 116: 52–58PubMedCrossRefGoogle Scholar
  45. 45.
    Oba H, Araki T, Ohtomo K et al (1993) Amyotrophic lateral sclerosis: T2 shortening0 in motor cortex at MR imaging. Radiology 189: 843–846PubMedGoogle Scholar
  46. 46.
    Cobb SR, Mehringer CM (1987) Wallerian degeneration in a patient with Schilder disease: MR imaging demonstration. Radiology 162: 521–522PubMedGoogle Scholar
  47. 47.
    Mirowitz S, Sartor K, Gado M, Torack R (1989) Focal signal-intensity variations in the posterior internal capsule: normal MR findings and distinction from pathologic findings. Radiology 172: 535–539PubMedGoogle Scholar
  48. 48.
    Segawa F (1993) MR findings of the pyramidal tract in amyotrophic lateral sclerosis. Rinsho Shinkeigaku 33: 835–844PubMedGoogle Scholar
  49. 49.
    Hofmann E, Ochs G, Pelzl A, Warmuth-Metz M (1998) The corticospinal tract in amyotrophic lateral sclerosis: an MRI study. Neuroradiology 40: 71–75PubMedCrossRefGoogle Scholar
  50. 50.
    Cheung G, Gawel MJ, Cooper PW et al (1995) Amyotrophic lateral sclerosis: correlation of clinical and MR imaging findings. Radiology 194: 263–270PubMedGoogle Scholar
  51. 51.
    Ishikawa K, Nagura H, Toyota T et al (1993) Signal loss in the motor cortex on magnetic resonance images in amyotrophic lateral sclerosis. Ann Neurol 33: 218–222PubMedCrossRefGoogle Scholar
  52. 52.
    Drayer BP (1998) Imaging of the aging brain. Part II. Pathologic conditions. Radiology 166: 797–806Google Scholar
  53. 53.
    Pioro EP, Antel JP, Cashman NR, Arnold DL (1994) Detection of cortical neuron loss in motor neuron disease by proton magnetic resonance spectroscopic imaging in vivo. Neurology 44: 1933–1938PubMedCrossRefGoogle Scholar
  54. 54.
    Gredal O, Rosenbaum S, Topp S et al (1997) Quantification of brain metabolites in amyotrophic lateral sclerosis by localized proton magnetic resonance spectroscopy. Neurology 48: 878–881PubMedCrossRefGoogle Scholar
  55. 55.
    Rooney WD, Miller RG, Gelinas D et al (1998) Decreased AT-acetylaspartate in motor cortex and corticospinal tract in ALS. Neurology 50: 1800–1805PubMedCrossRefGoogle Scholar
  56. 56.
    Ellis CM, Simmons A, Andrews C et al (1998) A proton magnetic resonance spectroscopic study in ALS: correlation with clinical findings. Neurology 51: 1104–1109PubMedCrossRefGoogle Scholar
  57. 57.
    Cwik VA, Hanstock CC, Allen PS, Martin WR (1998) Estimation of brainstem neuronal loss in amyotrophic lateral sclerosis with in vivo proton magnetic resonance spectroscopy. Neurology 50: 72–77PubMedCrossRefGoogle Scholar
  58. 58.
    Chan S, Shungu DC, Douglas-Akinwande A, Lange DJ, Rowland LP (1999) Motor neuron diseases: comparison of single-voxel proton MR spectroscopy of the motor cortex with MR imaging of the brain. Radiology 212: 763–769PubMedGoogle Scholar
  59. 59.
    Engel J Jr0, van Ness PC, Rasmussen T, Ojemann LM (1993) Outcome with respect to epilepctic seizure. In: Engel J Jr (ed) Surgical treatment of the epilepsies, 2nd edn. Raven, New York, pp 609–621Google Scholar
  60. 60.
    Wieser H, Engel JJ, Williamson PD et al (1993) Surgical remediable temporal lobe syndromes. In: Engel J Jr (ed) Surgical treatment of the epilepsies, 2nd edn. Raven, New York, pp 49–63Google Scholar
  61. 61.
    Jackson GD (1994) New techniques in magnetic resonance and epilepsy. Epilepsia 35 (Suppl 6):S2–13PubMedCrossRefGoogle Scholar
  62. 62.
    Cendes F, Caramanos Z, Andermann F et al (1997) Proton magnetic resonance spectroscopic imaging and magnetic resonance imaging volumetry in the lateralization of temporal lobe epilepsy: a series of 100 patients. Ann Neurol 42: 737–746PubMedCrossRefGoogle Scholar
  63. 63.
    Garcia PA, Laxer KD (1995) Magnetic resonance spectroscopy. Neuroimaging Clin North Am 5: 675–682Google Scholar
  64. 64.
    Vermathen P, Ende G, Laxer KD et al (1997) Hippocampal N-acetylaspartate in neocortical epilepsy and mesial temporal lobe epilepsy. Ann Neurol 42: 194–199PubMedCrossRefGoogle Scholar
  65. 65.
    Garcia PA, Laxer KD, van der Grond J et al (1995) Proton magnetic resonance spectroscopic imaging in patients with frontal lobe epilepsy. Ann Neurol 37: 279–281PubMedCrossRefGoogle Scholar
  66. 66.
    Petroff OAC, Rothman DL, Behar KL et al (1996) The effect of gabentin on brain gamma-aminobutyric acid in patients with epilepsy. Ann Neurol 39: 95–99PubMedCrossRefGoogle Scholar
  67. 67.
    Petroff OAC, Rothman DL, Behar KL, Mattson RH (1996) Human brain GABA levels rise after initiation of vigabatrin therapy but fail to rise further with increasing dose. Neurology 46: 1459–1463PubMedCrossRefGoogle Scholar
  68. 68.
    Verhoeff NP, Petroff OA, Hyder F et al (1999) Effects of vigabatrin on the GABAergic system as determined by (123I)iomazenil SPECT and GABA MRS. Epilepsia 40:1433–1438PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2001

Authors and Affiliations

  • A. Falini

There are no affiliations available

Personalised recommendations