Advertisement

New Magnetic Resonance Spectroscopy Strategies

  • O. Gonen
  • R. I. Grossman
Part of the Topics in Neuroscience book series (TOPNEURO)

Abstract

The impetus for the development and implementation of proton magnetic resonance spectroscopy (1H-MRS) in multiple sclerosis (MS) comes from the desire to understand the biochemical nature of the disease. Magnetic resonance (MR) is a highly sensitive but rather nonspecific window on brain pathology. MR specificity is of critical importance to successful correlation of imaging and histopathology. The diverse pathology of MS provides opportunities for multiple treatment strategies. Thus, identifying particular biochemical abnormalities may be viewed as the initial step in categorizing the disease process. MS lesions are disseminated over the entire central nervous system, yet until recently (1996) MRS methodology involved just single-voxel experiments. Although important data can be obtained in this way, much abnormal brain is excluded from the measurement. The following descriptions represent an approach that facilitates metabolic measures on a larger scale. The rationale for three-dimensional (3D) 1H-MRS and whole-brain N-acetylaspartate (WBNAA) quantification is that the diffuse nature of MS necessitates measures that take into account as much brain as possible. Additionally, the 3D 1H-MRS technique enables us to focus on lesions and activity (defined by gadolinium enhancement) in a prospective manner. This chapter will briefly review the current methodology and discuss two new methods utilizing a more global approach to MRS, in vivo brain 1H-MRS methods.

Keywords

Multiple Sclerosis Magn Reson Image Spectroscopic Imaging Chemical Shift Imaging Magnetic Resonance Spectroscopic Imaging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Frahm J, Bruhn H, Gyngell ML et al (1989) Localized proton NMR spectroscopy in different regions of the human brain in vivo. Relaxation times and concentration of cerebral metabolites. Magn Reson Med 11:47–63PubMedCrossRefGoogle Scholar
  2. 2.
    Bottomley PA (1987) Spatial localization in NMR spectroscopy in vivo. Ann NY Acad Sci 508:333–348PubMedCrossRefGoogle Scholar
  3. 3.
    Ordidge RJ, Connelly A, Lohman JAB (1986) Image selected in vivo spectroscopy (ISIS). A new technique for spatially selective NMR spectroscopy. J Magn Reson 66:283–294Google Scholar
  4. 4.
    Arnold DL, Matthews PM, Francis G, Antel J (1990) Proton magnetic resonance spectroscopy of human brain in vivo in the evaluations of multiple sclerosis: assessment of the load of disease. Magn Reson Med 14:154–159PubMedCrossRefGoogle Scholar
  5. 5.
    Hecke P van, Marshal G, Johannik K et al (1991) Human brain proton localized NMR spectroscopy in multiple sclerosis. Magn Reson Med 18: 199–206PubMedCrossRefGoogle Scholar
  6. 6.
    Grossman RI, Lenkinski RE, Ramer KN et al (1992) MR proton spectroscopy in multiple sclerosis. AJNR Am J Neuroradiol 13: 1535–1543PubMedGoogle Scholar
  7. 7.
    Davie CA, Hawkins CP, Barker GJ et al (1994) Serial proton magnetic resonance spectroscopy in acute multiple sclerosis lesions. Brain 117: 49–58PubMedCrossRefGoogle Scholar
  8. 8.
    Narayanan S, Fu L, Pioro E et al (1997) Imaging of axonal damage in multiple sclerosis: spatial distribution of magnetic resonance imaging lesions. Ann Neurol 41: 385–391PubMedCrossRefGoogle Scholar
  9. 9.
    Matthews PM, Pioro E, Narayanan S et al (1996) Assessment of lesion pathology in multiple sclerosis using quantitative MRI morphometry and magnetic resonance spectroscopy. Brain 119: 715–722PubMedCrossRefGoogle Scholar
  10. 10.
    Schiepers C, van Hecke P, Vandenberghe R et al (1997) Positron emission tomography, magnetic resonance imaging and proton NMR spectroscopy of white matter in multiple sclerosis. Multiple Sclerosis 3: 8–17PubMedCrossRefGoogle Scholar
  11. 11.
    Moonen CTW, Sobering G, van Zijl PCM et al (1992) Proton spectroscopic imaging of human brain. J Magn Reson 98: 556–575Google Scholar
  12. 12.
    Shungu DK, Glickson JD (1993) Sensitivity and localization enhancement in multinuclear in vivo NMR spectroscopy by outer volume presaturation. Magn Reson Med 30: 661–671PubMedCrossRefGoogle Scholar
  13. 13.
    Duyn JH, Gillen J, Sobering G et al (1993) Multisection Proton MR spectroscopic imaging of the brain. Radiology. 188: 277–282PubMedGoogle Scholar
  14. 14.
    Alger JR, Symko SC, Bizzi A et al (1993) Absolute quantitation of short TE brain 1H MR spectra and spectroscopic imaging data. J Comput Assist Tomogr 17: 191–199PubMedCrossRefGoogle Scholar
  15. 15.
    Posse S, Schuknecht B, Smith ME et al (1993) Short echo time proton MR spectroscopic imaging. J Comput Assist Tomogr 17: 1–14PubMedCrossRefGoogle Scholar
  16. 16.
    Duyn JH, Moonen CTW (1993) Fast proton spectroscopic imaging of human brain using multiple spin echoes. Magn Reson Med 30: 409–414PubMedCrossRefGoogle Scholar
  17. 17.
    Pan JW, Hetherington HP, Vaughan JT et al (1996) Evaluation of multiple sclerosis by 1H spectroscopy imaging at 4.1 T. Magn Reson Med 36: 72–77PubMedCrossRefGoogle Scholar
  18. 18.
    De Stefano N, Matthews PM, Arnold DL (1995) Reversible decrease in N-acetylaspartate after acute brain injury. Magn Reson Med 34: 721–727PubMedCrossRefGoogle Scholar
  19. 19.
    Sutton LN, Wang ZJ, Gusnard D et al (1992) Proton magnetic resonance spectroscopy of pediatric brain tumors. Neurosurgery 31: 195–202PubMedCrossRefGoogle Scholar
  20. 20.
    Segebarth CM, Baleriaux DF, Luyten PR, Hollander JAD (1990) Detection of metabolic heterogeneity of human intercranial tumors in vivo by 1H NMR spectroscopic imaging. Magn Reson Med 13: 62–76PubMedCrossRefGoogle Scholar
  21. 21.
    Fulham MJ, Bizzi A, Dietz MJ et al (1992) Mapping of brain tumor metabolites with proton MR spectroscopic imaging: clinical relevance. Radiology 185: 675–686PubMedGoogle Scholar
  22. 22.
    Ott D, Henning J, Ernst T (1993) Human brain tumors: assessment with in vivo proton MR spectroscopy. Radiology 186: 745–752PubMedGoogle Scholar
  23. 23.
    Sappey-Marinier D, Calabrese G, Hetherington HP et al (1992) Proton magnetic resonance spectroscopy of human brain: application to normal white matter, chronic infarction and MRI white matter signal hyperintensities. Magn Reson Med 26:313–327PubMedCrossRefGoogle Scholar
  24. 24.
    Hugg JW, Duijn JH, Matson GB et al (1992) Elevated lactate and alkalosis in chronic human brain infarction observed by 1H and 3IP MR spectroscopic imaging. J Cereb Blood Flow Metab 12: 734–744PubMedCrossRefGoogle Scholar
  25. 25.
    Chong WK, Sweeney B, Wilkinson ID et al (1993) Proton spectroscopy of the brain in HIV infection: correlation with clinical immunologic and MR imaging findings. Neuroradiology 188:119–124Google Scholar
  26. 26.
    Hugg JW, Laxer KD, Matson GB et al (1993) Neuron loss localizes human temporal lobe epilepsy in in vivo proton magnetic resonance spectroscopic imaging. Ann Neurol 34: 788–794PubMedCrossRefGoogle Scholar
  27. 27.
    Lexa FJ, Grossman RI, Rosenquist AC (1994) MR of wallerian degeneration in the feline visual system: characterization by magnetization transfer rate with histopathologic correlation. Am J Neuroradiol 15: 201–212PubMedGoogle Scholar
  28. 28.
    De Stefano N, Matthews PM, Antel JP et al (1995) Chemical pathology of acute demyelinating lesions and its correlation with disability. Ann Neurol 38: 901–909PubMedCrossRefGoogle Scholar
  29. 29.
    Tourbah A, Stievenart JL, Iba-Zizen MT et al (1996) In vivo localized proton NMRspectroscopy of normal appearing white matter in patients with multiple sclerosis. J Neuroradiol 23: 49–55PubMedGoogle Scholar
  30. 30.
    Brenner RE, Munro PMG, Williams SCR et al (1993) The proton NMR spectrum in acute EAE: the significance of the change in the Cho:Cr ratio. Magn Reson Med 29: 737–745PubMedCrossRefGoogle Scholar
  31. 31.
    Negendank W (1992) Studies of human tumors by MRS: a review. NMR Biomed 5:303–324PubMedCrossRefGoogle Scholar
  32. 32.
    Davie CA, Hawkins CP, Barker GJ et al (1993) Serial proton MRS in acute multiple sclerosis lesions. Brain 117: 49–58. In: Society for Magnetic Resonance in Medicine 12th Annual Meeting, New York, pp 133CrossRefGoogle Scholar
  33. 33.
    Michaelis T, Merboldt KD, Bruhn H et al (1993) Absolute concentrations of metabolites in the adult human brain in vivo: quantification of localized proton MR spectra. Neuroradiology 187: 219–227Google Scholar
  34. 34.
    Bottomley PA (1992) The trouble with spectroscopy papers. J Magn Reson Imaging 2:1–8PubMedCrossRefGoogle Scholar
  35. 35.
    Soher BJ, van Zijl PCM, Duyn JH, Barker PB (1996) Quantitative proton MR spectroscopic imaging of the human brain. Magn Reson Med 35: 356–363PubMedCrossRefGoogle Scholar
  36. 36.
    Toft PB, Christiansen P, Pryds O et al (1994) T1, T2 and concentrations of brain metabolites in neonates and adolescents estimated with H-1 MR spectroscopy. J Magn Reson Imaging 4: 1–5PubMedCrossRefGoogle Scholar
  37. 37.
    Ernst RR (1966) Sensitivity enhancement in magnetic resonance. Adv Magn Reson 2:1–135Google Scholar
  38. 38.
    Waugh JS (1970) Sensitivity in Fourier transform NMR spectroscopy of slowly relaxing systems. Journal of Molecular Spectroscopy 35: 298–305CrossRefGoogle Scholar
  39. 39.
    Husted CA, Duijn JH, Matson GB et al (1994) Molar quantitation of in vivo proton metabolites in human brain with 3D magnetic resonance spectroscopic imaging. Magn Reson Imaging 12: 661–667PubMedCrossRefGoogle Scholar
  40. 40.
    Sijens PE, van den Bent MJ, Nowak PJCM et al (1997) 1H Chemical shift imaging reveals loss of brain tumor choline signal after administration of Gd-contrast. Magn Reson Med 37: 222–225PubMedCrossRefGoogle Scholar
  41. 41.
    Brown TR, Kincaid BM, Ugurbil K (1982) NMR chemical shift imaging in three dimensions. Proc Natl Acad Sci USA 79: 3523–3526PubMedCrossRefGoogle Scholar
  42. 42.
    Maudsley AA, Hilal SK, Perman WH, Simon HE (1983) Spatially resolved high resolution spectroscopy by “four dimensional” NMR. J Magn Reson 51:147–152Google Scholar
  43. 43.
    Vigneron DB, Nelson SJ, Murphy-Boesch J et al (1990) Chemical shift imaging of human brain: axial, sagittal and coronal 3 1P metabolite images. Radiology 177: 643–649PubMedGoogle Scholar
  44. 44.
    Wang Z, Bolinger L, Subramanian VH, Leigh JS (1991) Errors of Fourier chemical shift imaging and their corrections. J Magn Reson 92: 64–72Google Scholar
  45. 45.
    Liang Z-P, Boada FE, Constable RT et al (1992) Constrained reconstruction methods in MR imaging. Rev Magn Reson Med 4: 57–185Google Scholar
  46. 46.
    Koch T, Brix G, Lorenz WJ (1994) Theoretical description, measurement and correctionof localization errors in 31P chemical-shift imaging. J Magn Reson Ser B 104:199–211CrossRefGoogle Scholar
  47. 47.
    Brown TR (1992) Practical applications of chemical shift imaging. NMR Biomed 5:238–243PubMedCrossRefGoogle Scholar
  48. 48.
    Bolinger L, Leigh JS (1988) Hadamard spectroscopic imaging (HSI) for multivolume localization. J Magn Reson 80:162–167Google Scholar
  49. 49.
    Goelman G, Subramanian VH, Leigh JS (1990) Transverse Hadamard spectroscopic imaging. J Magn Reson 89: 437–454Google Scholar
  50. 50.
    Goelman G, Leigh JS (1991) B1-insensitive Hadamard spectroscopic imaging technique. J Magn Reson 91: 93–101Google Scholar
  51. 51.
    Gonen O, Arias-Mendoza F, Goelman G (1997) 3D localized in vivo 1H spectroscopy of human brain using a hybrid of 1D-Hadamard with 2D-chemical shift imaging. Magn Reson Med 37: 644–650PubMedCrossRefGoogle Scholar
  52. 52.
    Maudsley AA, Matson GB, Hugg JW, Weiner MW (1994) Reduced phase encoding in spectroscopic imaging. Magn Reson Med 31: 645–651PubMedCrossRefGoogle Scholar
  53. 53.
    Frahm J, Michaelis T, Merboldt KD et al (1990) Improvement in localized proton NMR spectroscopy of human brain. Water suppression, short echo time, and 1 ml resolution. J Magn Reson 90: 464–473Google Scholar
  54. 54.
    Luyten PR, Marien AJH, den Hollander JA (1991) Acquisition and quantitation in proton spectroscopy. NMR Biomed 4: 64–69PubMedCrossRefGoogle Scholar
  55. 55.
    Gonen O, Viswanathan A-K, Catalaa I et al (1998) Total brain N-acetylaspartate concentration in normal, age-grouped females: quantitation with non-echo proton NMR spectroscopy. Magn Reson Med 40: 685–689CrossRefGoogle Scholar
  56. 56.
    Gonen O, Catalaa I, Babb JS et al (2000) Total brain N-acetylaspartate: a new measure of disease load in MS. Neurology 54: 15–19PubMedCrossRefGoogle Scholar
  57. 57.
    Husted CA, Goodin DS, Hugg JW et al (1994) Biochemical alterations in multiple sclerosis lesions and normal-appearing white matter detected by in vivo 31P and 1H spectroscopic imaging. Ann Neurol 36: 157–165PubMedCrossRefGoogle Scholar
  58. 58.
    Simon JH (1997) Contrast-enhanced MR imaging in the evaluation of treatment response and prediction of outcome in multiple sclerosis. J Magn Reson Imaging 7:29–37PubMedCrossRefGoogle Scholar
  59. 59.
    Grossman RI, Gonzalez-Sacarno F, Atlas SW et al (1986) Multiple sclerosis: gadolinium enhancement in MR imaging. Radiology 161: 721–725PubMedGoogle Scholar
  60. 60.
    Dousset V, Grossman RI, Ramer KN et al (1992) Experimental allergic encephalomyelitis and multiple sclerosis: lesion characterization with magnetization transfer imaging. [Published erratum appears in Radiology 1992 183:878]. Radiology 182: 483–491PubMedGoogle Scholar
  61. 61.
    Dousset V (1993) Magnetization transfer imaging in vivo study of normal brain tissues and characterization of multiple sclerosis and experimental allergic encephalomyelitis lesions. J Neuroradiol 20: 372–379Google Scholar
  62. 62.
    Dreher W, Leibfritz D (1994) Double-echo multislice proton spectroscopic imaging using Hadamard slice encoding. Magn Reson Med 31: 596–600PubMedCrossRefGoogle Scholar
  63. 63.
    Gonen O, Hu J, Stoyanova R et al (1995) Hybrid three dimensional (1D-Hadamard, 2D-chemical shift imaging) phosphorus localized spectroscopy of a human brain. Magn Reson Med 33: 300–308PubMedCrossRefGoogle Scholar
  64. 64.
    Levitt MH, Ernst RR (1983) Composite pulses constructed by a recursive expansion procedure. J Magn Reson 55: 247–254Google Scholar
  65. 65.
    Haase A, Frahm J, Hanicke W, Matthaei D (1985) 1H NMR chemical shift selective (CHESS) imaging. Phys Med Biol 30: 341–344PubMedCrossRefGoogle Scholar
  66. 66.
    Hore PJ (1983) Solvent suppression in Fourier transform nuclear magnetic resonance. J Magn Reson 55: 283–300Google Scholar

Copyright information

© Springer-Verlag Italia 2001

Authors and Affiliations

  • O. Gonen
  • R. I. Grossman

There are no affiliations available

Personalised recommendations