Skip to main content

Abstract

Recursive matrices are bi-infinite matrices which can be recursively generated starting from two given Laurent series α and β, called the recurrence rule and the boundary value of the matrix, respectively. The i th row of a recursive matrix contains the coefficients of the series αi β. These matrices were introduced by Barnabei, Brini, and Nicoletti [1] to formulate a more general version of the umbral calculus developed in a series of fundamental papers by Rota and his school [79]. In [2] it was shown that the most important operators of the umbral calculus can be represented by recursive matrices. In particular, shift-invariant operators, which play a crucial role in Rota’s theory, correspond to Toeplitz matrices, which can be characterized as recursive matrices with recurrence rule α(t) = t. Recently, recursive matrices were found to be useful in studying algebraic aspects of signal processing, since they contain the classes of bi-infinite Toeplitz, Hankel and Hurwitz matrices as special cases [3, 4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barnabei, M., Brini, A., Nicoletti, G. (1982): Recursive matrices and umbral calculus. J. Algebra 75, 546–573

    Article  MathSciNet  MATH  Google Scholar 

  2. Barnabei, M., Brini, A., Nicoletti, G. (1986): A general umbral calculus. In: Science and computers. Advances in Math. Suppl. Studies, 10. Academic Press, Orlando, FL, pp. 221–244

    Google Scholar 

  3. Barnabei, M., Guerrini, C., Montefusco, L.B. (1998): Some algebraic aspects of signal processing. Linear Alg. Appl. 284, 3–17

    Article  MathSciNet  MATH  Google Scholar 

  4. Barnabei, M., Montefusco, L.B. (1998): Recursive properties of Toeplitz and Hurwitz matrices. Linear Alg. Appl. 274, 367–388

    Article  MathSciNet  MATH  Google Scholar 

  5. Davis, P.J. (1994): Circulant matrices. 2nd edition. Chelsea, New York

    Google Scholar 

  6. Gantmacher, F.R. (1959): The theory of matrices, vols. 1, 2. Chelsea, New York

    Google Scholar 

  7. Mullin, R., Rota, G.-C. (1970): On the foundations of combinatorial theory. III. Theory of binomial enumeration. In: Harris, B. (ed.), Graph theory and its applications. Academic Press, New York pp. 167–213

    Google Scholar 

  8. Roman, S.M., Rota, G.-C. (1978): The umbral calculus. Adv. Math. 27, 95–188

    Article  MathSciNet  MATH  Google Scholar 

  9. Rota, G.-C., Kahaner, D., Odlyzko, A. (1973): On the foundations of combinatorial theory. VIII. Finite operator calculus. J. Math. Anal. Appl. 42, 684–760

    Article  MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Italia

About this chapter

Cite this chapter

Barnabei, M., Montefusco, L.B. (2001). Circulant recursive matrices. In: Crapo, H., Senato, D. (eds) Algebraic Combinatorics and Computer Science. Springer, Milano. https://doi.org/10.1007/978-88-470-2107-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2107-5_7

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2159-4

  • Online ISBN: 978-88-470-2107-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics