Advertisement

A curious characteristic property of standard Sturmian words

  • G. Pirillo

Abstract

Sturmian words have been studied for a very long time (Bernoulli [1], Christoffel [3], Markoff [18], Morse and Hedlund [19], Coven and Hedlund [5], Lunnon and Pleasants [17],…). They are infinite words that have exactly n + 1 factors of length n, for each n < 0. Thus they are written in a binary alphabet. Recently a natural and promising generalization to an arbitrary alphabet was presented in [9].

Keywords

Common Prefix Infinite Word Binary Alphabet Longe Common Prefix Sturmian Word 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bernoulli, J. (1772): Sur une nouvelle espèce de calcul. In: Recueil pour les Astronomes. Tome 1. Berlin, pp. 255–284Google Scholar
  2. [2]
    Berstel, J., Séébold, P. (2000): Sturmian words. In: Lothaire, M., Algebraic Combinatorics on Words. (Preliminay Version (8 Nov. 2000)). Insitut Gaspard Monge, Université Marne-la-Vallée. To appear, pp. 41–98Google Scholar
  3. [3]
    Christoffel, E.B. (1875): Observatio arithmetica. Mat. Ann. 6, 145–152Google Scholar
  4. [4]
    Coven, E.M. (1974): Sequences with minimal block growth. II. Math. Systems Theory 8, 376–382MathSciNetCrossRefGoogle Scholar
  5. [5]
    Coven, E.M., Hedlund, G.A. (1973): Sequences with minimal block growth. Math. Systems Theory 7, 138–153MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    de Luca, A. (1997): Sturmian words: structure, combinatorics, and their arithmetics. Theoret. Comput. Sci. 183, 45–82MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    de Luca, A. (2000): Personal communication, e-mail of 10 January 2000Google Scholar
  8. [8]
    de Luca, A., Mignosi, F. (1994): Some combinatorial properties of Sturmian words. Theoret. Comput. Sci. 136, 361–385MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    Droubay, X., Justin, J., Pirillo, G.: Episturmian words and some constructions of de Luca and Rauzy. Theoret. Comput. Sci., to appearGoogle Scholar
  10. [10]
    Droubay, X., Pirillo, G. (1999): Palindromes and Sturmian words. Theoret. Comput. Sci. 223, 73–85MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    Hardy, G. H., Wright, E.M. (1971): An introduction to the theory of numbers. 4th edition. Clarendon Press, OxfordGoogle Scholar
  12. [12]
    Justin, J., Pirillo, G. (1997): Decimations and Sturmian words. RAIRO Inform. Théor. Appl. 31, 271–290MathSciNetMATHGoogle Scholar
  13. [13]
    Kac, M., Rota G.-C., Schwartz J. T. (1992): Discrete thoughts. Birkhäuser Boston, Boston, MAMATHGoogle Scholar
  14. [14]
    Knuth, D.E. (1972): Sequences with precisely k + 1 k-blocks: Solution of problem E2307. Amer. Math. Monthly 79, 773–774MathSciNetCrossRefGoogle Scholar
  15. [15]
    Knuth, D.E. (1973): The art of computer programming. Vol. 3: Sorting and searching. Addison-Wesley, Reading, MAGoogle Scholar
  16. [16]
    Lothaire, M. (1983): Combinatorics on words. Addison-Wesley, Reading, MAMATHGoogle Scholar
  17. [17]
    Lunnon, W.F., Pleasants, P.A.B. (1992): Characterization of two-distance sequences. J. Austral. Math. Soc. Ser. A 53, 198–218MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    Markoff, A. (1882): Sur une question de Jean Bernoulli. Math. Ann. 19, 27–36MathSciNetCrossRefGoogle Scholar
  19. [19]
    Morse, M., Hedlund, G.A. (1940): Symbolic dynamics II. Sturmian trajectories. Amer. J. Math. 62, 1–42MathSciNetCrossRefGoogle Scholar
  20. [20]
    Pirillo, G. (1999) From the Fibonacci word to Sturmian words. Publ. Math. Debrecen, 54, Suppl., 961–971MathSciNetMATHGoogle Scholar
  21. [21]
    Pirillo, G. (1999): A new characteristic property of the palindrome prefixes of a standard Sturmian word. Sém. Lothar. Combin. 43, Art B43f (electronic)Google Scholar
  22. [22]
    Rauzy, G. (1985): Mots infinis en arithmétique. In: Nivat, M., Perrin, D. (eds.), Automata on Infinite Words. (Lecture Notes in Computer Science vol 194). Springer, Berlin, pp. 165–171Google Scholar
  23. [23]
    Rota G.-C. (1993): Pensieri discreti. Garzanti, MilanoGoogle Scholar
  24. [24]
    Rota G.-C. (1997): Indiscrete thoughts. Birkhäuser Boston, Boston, MAMATHGoogle Scholar
  25. [25]
    Rota G.-C. (1999): Lezioni napoletane. La Città del Sole, NapoliGoogle Scholar
  26. [26]
    Thue, A. (1906): Über unendliche Zeichenreihen. Skr. Norske Vid. Selsk. Kristiania I. Mat. Naturv. Klasse I, 1906(7), 1–22Google Scholar

Copyright information

© Springer-Verlag Italia 2001

Authors and Affiliations

  • G. Pirillo

There are no affiliations available

Personalised recommendations