Episturmian words and morphisms (results and conjectures)

  • J. Justin


The theory of Sturmian words is well developed and is an active subject of research (survey in [2]).


Negative Shift Continue Fraction Expansion Sierpinski Gasket Balance Property Partial Quotient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Arnoux, P., Rauzy, G. (1991): Représentation géometrique des suites de complexité 2n + 1. Bull. Soc. Math. France 119, 199–215MathSciNetMATHGoogle Scholar
  2. [2]
    Berstel, J., Séébold, P. (2000): Sturmian words. In: Lothaire, M., Algebraic Combinatorics on Words. (Preliminary Version (8 Nov. 2000)). Institut Gaspard Monge, Université Marne-la-Vallée. To appear, pp. 41–98Google Scholar
  3. [3]
    Berstel, J., Séébold, P. (1994): A remark on morphic Sturmian words. Marne-la-Vallée Inform. Théor. Appl. 28, 255–263MATHGoogle Scholar
  4. [4]
    Castelli, M.G., Mignosi, F., Restivo, A. (1999): Fine and Wilf’s theorem for three periods and a generalization of Sturmian words. Theoret. Comput. Sci. 218, 83–94MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    de Luca, A. (1997): Sturmian words: structure, combinatorics, and their arithmetics. Theoret. Comput. Sci. 183, 45–82MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    Droubay, X., Justin, X., Pirillo, G. (2000): Episturmian words and some constructions of de Luca and Rauzy. Theoret. Comput. Sci., to appear. See also: Palindrome factors and a characterization by de Luca of standard Sturmian infinite words. LIAFA 98-06, Laboratoire d’Informatique et d’Algorithmique Fondements et Applications, Université de Paris VII, ParisGoogle Scholar
  7. [7]
    Droubay, X., Pirillo, G. (1999): Palindromes and Sturmian words. Theoret. Comput. Sci. 223, 73–85MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    Mignosi, F., Seebold, P.: (1993): Morphismes Sturmiens et règles de Rauzy. J. Théor. Nombres Bordeaux 5, 221–233MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    Parvaix, B. (1997): Propriétés d’invariance des mots sturmiens. J. Théor. Nombres Bordeaux 9, 351–369MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    Rauzy, G. (1982): Nombres algébriques et substitutions. Bull. Soc. Math. France 110, 147–178MathSciNetMATHGoogle Scholar
  11. [11]
    Rauzy, G. (1985): Mots infinis en arithmétique. In: Nivat, M., Perrin, D. (eds.) Automata on Infinite Words. (Lecture Notes in Computer Science, vol. 194). Springer, Berlin, pp. 165–171Google Scholar
  12. [12]
    Vandeth, D. (2000): Sturmian words and words with a critical exponent. Theoret. Comput. Sci. 242, 283–300MathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    Vuillon, L. (1999): A characterization of Sturmian words by return words. LIAFA 99/21, Laboratoire d’Informatique et d’Algorthmique Fondements et Applications, Université de Paris VII, ParisGoogle Scholar

Copyright information

© Springer-Verlag Italia 2001

Authors and Affiliations

  • J. Justin

There are no affiliations available

Personalised recommendations