On the permanent of certain circulant matrices

  • B. Codenotti
  • G. Resta


The computation of the permanent of a matrix seems to be a very hard task, even for sparse (0, 1)-matrices. A number of results show that it is extremely unlikely that there is a polynomial time algorithm for computing the permanent. The best known algorithm is due to Ryser [22] and takes O(n 2 n ) operations, where n is the matrix size.


Bipartite Graph Planar Graph Adjacency Matrix Polynomial Time Algorithm Toeplitz Matrice 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bernasconi, A., Codenotti, B., Crespi, V., Resta, G. (1999): How fast can one compute the permanent of circulant matrices? Linear Algebra Appl. 292, 15–37MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    Bose, R.C., Chowla, S. (1962): Theorems in the additive theory of numbers. Comment. Math. Helv. 37, 141–147MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    Brualdi, R.A, Shader, B.L. (1995): Matrices of sign-solvable linear systems. Cambridge University Press, CambridgeMATHCrossRefGoogle Scholar
  4. [4]
    Codenotti, B., Crespi, V., Resta, G. (1997): On the permanent of certain (0, 1) Toeplitz matrices. Linear Algebra Appl. 267, 65–100MathSciNetMATHGoogle Scholar
  5. [5]
    Codenotti, B., Resta, G. (2000): Circulant permanents. In preparationGoogle Scholar
  6. [6]
    Dagum, R, Luby, M., Mihail, M., Vazirani, U. (1988): Polytopes, permanents, and graphs with large factors. In: Proceedings of the 29th IEEE Symposium on Foundations of Computer Science. Institute of Electrical and Electronics Engineers. Washington, DC, pp. 412–421Google Scholar
  7. [7]
    Dietrich, C.R., Osborne, M.R. (1996): O (n log2 n) determinant computation of aToeplitz matrix and fast variance estimation. Appl. Math. Lett. 9, 29–31MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    Elspas, B., Turner, J. (1970): Graphs with circulant adjacency matrices. J. Combin. Theory 9, 297–307MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    Feige, U., Lund, C. (1992): On the hardness of computing the permanent of random matrices. In: Proceedings of the Twenty-Fourth Annual ACM Symposium on the Theory of Computing. Association for Computing Machinery, New York, pp. 643–654Google Scholar
  10. [10]
    Galluccio, A., Loebl, M. (1999): On the theory of Pfaffian orientations. I. Perfect matchings and permanents. Electron. J. Combin. 6, R6MathSciNetGoogle Scholar
  11. [11]
    Galluccio, A., Loebl, M. (1999): On the theory of Pfaffian orientations. II. T-joins, k-cuts, and duality of enumeration. Electron. J. Combin. 6, R7MathSciNetGoogle Scholar
  12. [12]
    Halberstam, H., Roth, K.F. (1966): Sequences. Clarendon Press, OxfordMATHGoogle Scholar
  13. [13]
    Kac, M., Ward, J.C. (1952): A combinatorial solution of the two-dimensional Ising model. Phys. Rev. 88, 1332–1337MATHCrossRefGoogle Scholar
  14. [14]
    Kasteleyn, P.W. (1961): The statistics of dimers on a lattice. I. The number of dimer arrangements on a quadratic lattice. Physica 27, 1209–1225MATHCrossRefGoogle Scholar
  15. [15]
    Kasteleyn, P.W. (1963): Dimer statistics and phase transitions. J. Math. Phys. 4, 287–293MathSciNetCrossRefGoogle Scholar
  16. [16]
    Kasteleyn, P.W. (1967): Graph theory and crystal physics. In: Harary, F. (ed.). Graph Theory and Theoretical Physics. Academic Press, London, pp. 43–110Google Scholar
  17. [17]
    Lovasz, L., Plummer, M.D. (1986): Matching theory. (Annals of Discrete Mathematics, vol. 29). North-Holland, AmsterdamGoogle Scholar
  18. [18]
    McCuaig, W., Robertson, N., Seymour, P.D., Thomas, R. (1997): Permanents, Pfaffian orientations, and even directed circuits (extended abstract). Proceedings of the Twenty-Ninth ACM Symposium on the Theory of Computing. Association for Computing Machinery, New York, pp. 402–405Google Scholar
  19. [19]
    Minc, H. (1978): Permanents. (Encyclopedia of Mathematics and its Applications, vol. 6). Addison-Wesley, Reading, MAMATHGoogle Scholar
  20. [20]
    Minc, H. (1987): Permanental compounds and permanents of (0, 1) circulants. Linear Algebra Appl. 86, 11–42MathSciNetMATHCrossRefGoogle Scholar
  21. [21]
    Polya, G. (1913): Aufgabe 424. Arch. Math. Phys. (3), 20, 271Google Scholar
  22. [22]
    Ryser, H.J. (1963): Combinatorial mathematics. (The Carus Mathematical Monographs no. 14). Mathematical Association of America, Buffalo, NYMATHGoogle Scholar
  23. [23]
    Valiant, L.G. (1979): The complexity of computing the permanent. Theoret. Comput. Sci. 8, 189–201MathSciNetMATHCrossRefGoogle Scholar
  24. [24]
    Valiant, L.G. (1979): Completeness classes in algebra. In: Conference Record of the Eleventh ACM Symposium on Theory of Computing. Association for Computing Machinery, New York, pp. 249–261Google Scholar

Copyright information

© Springer-Verlag Italia 2001

Authors and Affiliations

  • B. Codenotti
  • G. Resta

There are no affiliations available

Personalised recommendations