Advertisement

Catalan and other numbers: a recurrent theme

  • M. Aigner

Abstract

The Catalan numbers C n are, next to the binomial coefficients, the best studied of all combinatorial counting numbers. The wonderful book by Stanley [28] lists more than 70 instances of enumeration problems which are counted by the sequence (C n ). We will see several of them as we go along.

Keywords

Orthogonal System Recurrent Theme Catalan Number Hankel Matrix Combinatorial Interpretation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Aigner, M. (1998): Motzkin numbers. European J. Combin. 19, 663–675MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    Aigner, M. (1999): Catalan-like numbers and determinants. J. Combin. Theory Ser. A 87, 33–51MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    Aigner, M. (1999): A characterization of the Bell numbers. Discrete Math. 205, 207–210MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    Aigner, M. (2000): Enumeration via ballot tables. PreprintGoogle Scholar
  5. [5]
    Barnabei, M., Brini, A., Nicoletti, G. (1982): Recursive matrices and umbral calculus. J. Algebra 75, 546–573MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    Barnabei, M., Montefusco, L.B. (1998): Recursive properties of Toeplitz and Hurwitz matrices. Linear Alg. Appl. 274, 367–388MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    Bernhart, F.R. (1999): Catalan, Motzkin and Riordan numbers. Discrete Math. 204, 73–112MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    Bousquet-Mélou, M. (1994): Polyominoes and polygons. In: Barcelo, H., Kalai, G. (eds.) Jerusalem Combinatorics’ 93. (Contemporary Mathematics, vol. 178). American Mathematical Society, Providence, RI, pp. 55–70CrossRefGoogle Scholar
  9. [9]
    Chihara, T.S. (1978): An introduction to orthogonal polynomials. Gordon and Breach, New YorkMATHGoogle Scholar
  10. [10]
    Delest, M.-P., Fadou, J.M. (1993): Enumeration of skew Ferrers diagrams. Discrete Math. 112, 65–79MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    Delest, M.-P., Viennot, G. (1984): Algebraic languages and polynominoes enumeration. Theoret. Comput. Sci. 34, 169–206MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    Deutsch, E. (1999): Dyck path enumeration. Discrete Math. 204, 167–202MathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    Donaghey, R., Shapiro, L.W. (1977): The Motzkin numbers. J. Combin. Theory Ser. A 23, 291–301MathSciNetMATHCrossRefGoogle Scholar
  14. [14]
    Flajolet, P. (1985): Combinatorial aspects of continued fractions. Discrete Math. 32, 125–161MathSciNetGoogle Scholar
  15. [15]
    Gessel, I.M., Viennot, G. (1985): Binomial determinants, paths, and hook length formulae. Adv. Math. 58, 300–321MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    Goulden, I., Jackson, D. (1983): Combinatorial enumeration. Wiley, New YorkMATHGoogle Scholar
  17. [17]
    Gouyou-Beauchamps, D., Viennot, G. (1988): Equivalence of the two-dimensional animal problem to a one-dimensional path problem. Adv. Appl. Math. 9, 334–357MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    Harary, F., Read, R. (1970): The enumeration of tree-like polyhexes. Proc. Edinburgh Math. Soc. 17, 1–13MathSciNetMATHCrossRefGoogle Scholar
  19. [19]
    Hofbauer, J., Fürlinger, J. (1985): q-Catalan numbers. J. Combin. Theory Ser. A 40, 248–264MathSciNetMATHCrossRefGoogle Scholar
  20. [20]
    Lindström, B. (1973): On the vector representation of induced matroids. Bull. London Math. Soc. 5, 85–90MathSciNetMATHCrossRefGoogle Scholar
  21. [21]
    Polýa, G. (1976): Problems and theorems in analysis, vol. II. Theory of functions, zeros, polynomials, determinants, number theory, geometry. Springer, BerlinGoogle Scholar
  22. [22]
    Roman, S. (1984): The umbral calculus. Academic Press, New YorkMATHGoogle Scholar
  23. [23]
    Roman, S., Rota, G.-C. (1978): The umbral calculus. Adv. Math. 27, 95–188MathSciNetMATHCrossRefGoogle Scholar
  24. [24]
    Riordan, J. (1968): Combinatorial identities. Wiley, New YorkMATHGoogle Scholar
  25. [25]
    Shapiro, L.W., Getu, S., Woan, W.-J., Woodson, L.C. (1991): The Riordan group. Discrete Appl. Math. 34, 229–239MathSciNetMATHCrossRefGoogle Scholar
  26. [26]
    Sprugnoli, R. (1994): Riordan arrays and combinatorial sums. Discrete Math. 132, 267–290MathSciNetMATHCrossRefGoogle Scholar
  27. [27]
    Stanley, R. (1997): Enumerative combinatorics, vol. I. (Cambridge Studies in Advanced Mathematics, vol. 49). Cambridge University Press, CambridgeMATHCrossRefGoogle Scholar
  28. [28]
    Stanley, R. (1999): Enumerative combinatorics, vol. 2. (Cambridge Studies in Advanced Mathematics, vol. 62). Cambridge University Press, CambridgeCrossRefGoogle Scholar
  29. [29]
    Viennot, G. (1984): Une théorie combinatoire des polynômes orthogonaux. Lecture Notes, Université de QuebecGoogle Scholar

Copyright information

© Springer-Verlag Italia 2001

Authors and Affiliations

  • M. Aigner

There are no affiliations available

Personalised recommendations