A formal theory of resultants (II): a constructive definition of the resultant

  • G.-C. Rota
  • J. A. Stein


Let A and P denote negative alphabets so that the supersymmetric algebra Super[A|P] is an ordinary polynomial algebra in the neutral elements [a|u] for a in A and u in P.


Linear Form Resultant Operator Formal Theory Previous Proposition Common Zero 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Cayley, A. (1989-1898): The collected mathematical papers of Arthur Cayley, vols. 1-14. Cambridge University Press, CambridgeGoogle Scholar
  2. [2]
    Cullis, C. E. (1913-1925): Matrices and determinoids. Cambridge University Press, CambridgeGoogle Scholar
  3. [3]
    Gel’fand, I.M., Kapranov, M.M., Zelevinsky, A.V. (1994): Discriminants, resultants and multdimensional determinants. Birkhäuser Boston, Boston, MACrossRefGoogle Scholar
  4. [4]
    Grosshans, F., Rota, G.-C., Stein, J. A. (1987): Invariant theory and superalgebras. (CBMS Regional Conference Series in Mathematics, vol. 69). American Mathematical Society, Providence, RIGoogle Scholar
  5. [5]
    Jouanolou, J.-P. (1980): Ideaux résultants. Adv. Math. 37, 212–238MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    Jouanolou, J.-P. (1991): Le formalisme du résultant. Adv. Math. 90, 117–263MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    Mac Mahon, P.A. (1978-1986): Collected papers I, II. MIT Press, Cambridge, MAGoogle Scholar
  8. [8]
    Netto, E. (1896-1900): Vorlesungen über Algebra. Teubner, LeipzigGoogle Scholar
  9. [9]
    Poisson, J.J. (1802): J. Ecole Polytech. 4, 199–203Google Scholar
  10. [10]
    Rota, G.-C., Stein, J. A. (1994): Plethystic Hopf algebras. Proc. Nat. Acad. Sci. U.S.A. 91, 13057–13061MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    Rota, G.-C., Stein, J. A. (1994): Plethystic algebras and vector symmetric function. Proc. Nat. Acad. Sci. U.S.A 91, 13062–13066MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    Schinzel, A. (1982): Selected topics on polynomials. University of Michigan Press, Ann Arbor, MIMATHGoogle Scholar

Copyright information

© Springer-Verlag Italia 2001

Authors and Affiliations

  • G.-C. Rota
  • J. A. Stein

There are no affiliations available

Personalised recommendations