Skip to main content

A formal theory of resultants (II): a constructive definition of the resultant

  • Chapter
Algebraic Combinatorics and Computer Science
  • 1025 Accesses

Abstract

Let A and P denote negative alphabets so that the supersymmetric algebra Super[A|P] is an ordinary polynomial algebra in the neutral elements [a|u] for a in A and u in P.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cayley, A. (1989-1898): The collected mathematical papers of Arthur Cayley, vols. 1-14. Cambridge University Press, Cambridge

    Google Scholar 

  2. Cullis, C. E. (1913-1925): Matrices and determinoids. Cambridge University Press, Cambridge

    Google Scholar 

  3. Gel’fand, I.M., Kapranov, M.M., Zelevinsky, A.V. (1994): Discriminants, resultants and multdimensional determinants. Birkhäuser Boston, Boston, MA

    Book  Google Scholar 

  4. Grosshans, F., Rota, G.-C., Stein, J. A. (1987): Invariant theory and superalgebras. (CBMS Regional Conference Series in Mathematics, vol. 69). American Mathematical Society, Providence, RI

    Google Scholar 

  5. Jouanolou, J.-P. (1980): Ideaux résultants. Adv. Math. 37, 212–238

    Article  MathSciNet  MATH  Google Scholar 

  6. Jouanolou, J.-P. (1991): Le formalisme du résultant. Adv. Math. 90, 117–263

    Article  MathSciNet  MATH  Google Scholar 

  7. Mac Mahon, P.A. (1978-1986): Collected papers I, II. MIT Press, Cambridge, MA

    Google Scholar 

  8. Netto, E. (1896-1900): Vorlesungen über Algebra. Teubner, Leipzig

    Google Scholar 

  9. Poisson, J.J. (1802): J. Ecole Polytech. 4, 199–203

    Google Scholar 

  10. Rota, G.-C., Stein, J. A. (1994): Plethystic Hopf algebras. Proc. Nat. Acad. Sci. U.S.A. 91, 13057–13061

    Article  MathSciNet  MATH  Google Scholar 

  11. Rota, G.-C., Stein, J. A. (1994): Plethystic algebras and vector symmetric function. Proc. Nat. Acad. Sci. U.S.A 91, 13062–13066

    Article  MathSciNet  MATH  Google Scholar 

  12. Schinzel, A. (1982): Selected topics on polynomials. University of Michigan Press, Ann Arbor, MI

    MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Italia

About this chapter

Cite this chapter

Rota, GC., Stein, J.A. (2001). A formal theory of resultants (II): a constructive definition of the resultant. In: Crapo, H., Senato, D. (eds) Algebraic Combinatorics and Computer Science. Springer, Milano. https://doi.org/10.1007/978-88-470-2107-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2107-5_13

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2159-4

  • Online ISBN: 978-88-470-2107-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics