Advertisement

A formal theory of resultants (I): an algorithm in invariant theory

  • G.-C. Rota
  • J. A. Stein

Abstract

Let A = a < b < … be an infinite alphabet of negative letters, and let P = u 1 < u 2 < ⋯ < u n be an alphabet containing n negative places. The elements of the letterplace alphabet

Keywords

Polynomial Function Formal Theory Symmetric Function Fundamental Theorem Monomial Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Cayley, A. (1889-1898): The collected mathematical papers of Arthur Cayley, vols. 1-14. Cambridge University Press, CambridgeGoogle Scholar
  2. [2]
    Cullis, C. E. (1913-1925): Matrices and determinoids. Cambridge University Press, CambridgeGoogle Scholar
  3. [3]
    Gel’fand, I.M., Kapranov, M.M., Zelevinsky, A.V. (1994): Discriminants, resultants and multidimensional determinants. Birkhäuser Boston, Boston, MAMATHCrossRefGoogle Scholar
  4. [4]
    Grosshans, F., Rota, G.-C., Stein, J. A. (1987): Invariant theory and superalgebras. (CBMS Regional Conference Series in Mathematics, vol. 69). American Mathematical Society, Providence, RIGoogle Scholar
  5. [5]
    Mac Mahon, P.A. (1978, 1986): Collected papers I, II. MIT Press, Cambridge, MAGoogle Scholar
  6. [6]
    Netto, E. (1896-1900): Vorlesungen über Algebra. Teubner, LeipzigGoogle Scholar
  7. [7]
    Rota, G.-C., Stein, J. A. (1994): Plethystic Hopf algebras. Proc. Nat. Acad. Sci. U.S.A. 91, 13057–13061MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    Rota, G.-C., Stein, J. A. (1994): Plethystic algebras and vector symmetric function. Proc. Nat. Acad. Sci. U.S.A. 91, 13062–13066MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    Schinzel, A. (1982): Selected topics on polynomials. University of Michigan Press, Ann Arbor, MIMATHGoogle Scholar

Copyright information

© Springer-Verlag Italia 2001

Authors and Affiliations

  • G.-C. Rota
  • J. A. Stein

There are no affiliations available

Personalised recommendations