Advertisement

Concentrations of Trace Metals (Cd, Cu, Fe, Pb) in Posidonia oceanica Seagrass of Liscia Bay, Sardinia (Italy)

  • M. Baroli
  • A. Cristini
  • A. Cossu
  • G. De Falco
  • V. Gazale
  • C. Pergent-Martini
  • G. Pergent

Abstract

Heavy metal concentrations were measured in Posidonia oceanica seagrass from a Mediterranean site (Liscia bay, N Sardinia, Italy) in order to assess the degree of metal pollution in the area. Metals Cd, Cu, Fe and Pb were measured in sheaths and rhizomes dated and dissected by lepidochronology procedures, which may offer a timeseries of metal concentrations in the environment (Pergent 1990; Romeo et al. 1995).

Comparison between metal concentrations according to lepidochronological years in sheaths and rhizomes produced significant differences: Cd and Cu concentrations were similar in the two tissues, while Fe and Pb showed higher values in sheaths, with differences up to 2 orders of magnitude. Rhizome concentrations showed no trend related to lepidochronological years, whereas Cu, Fe and Pb tended to decrease over time in sheaths.

Values detected in sheaths and rhizomes of P. oceanica from Liscia bay were generally low, compared with other Mediterranean sites, with the exception of Fe: this confirms that the site is a clean area without anthropogenic enrichment and with metal concentrations representing background values.

Keywords

Metal Concentration Trace Metal Heavy Metal Concentration Comparison Site Clean Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Augier H (1985) L’herbier à Posidonia oceanica, son importance pour le littoral méditerranéen, sa valeur comme indicateur biologique de l’état de santé de la mer, son utilisation dans la surveillance du milieu, les bilans écologiques et les études d’impact. Vie Mar 7: 85–113Google Scholar
  2. Augier H, Gilles G, Ramonda G (1977) Utilisation de la phanérogame marine Posidonia oceanica Delile pour mesurer le degré de Contamination mercurielle des eaux littorales méditerranéennes. CR Acad Sci Ser III-Vie 285: 1557–1560Google Scholar
  3. Boudouresque CF, Crouzet A, Pergent G (1983) Un nouvel outil au service de l’étude des herbiers à Posidonia oceanica: la lépidochronologie. Rapp P-V Réun Comm Int Explor Sci Médit 28: 111–112Google Scholar
  4. Calmet D, Boudouresque CF, Meinesz A (1988) Memorisation of nuclear atmospheric tests by rhizomes and scales of Mediterranean seagrass Posidonia oceanica (Linnaeus) Delile. Aquat Bot 30: 279–294CrossRefGoogle Scholar
  5. Catsiki VA, Panayotidis P (1993) Copper, chromium and nickel in tissues of the Mediterranean seagrasses Posidonia oceanica and Cymodocea nodosa (Potamogetonacea) from Greek coastal areas. Chemosphere 26 (5): 963–978CrossRefGoogle Scholar
  6. Catsiki VA, Panayotidis P, Papathanassiou E (1987) Bioaccumulation of heavy metals by seagrasses in Greek coastal waters. Posidonia Newsl 1 (2): 21–30Google Scholar
  7. Crouzet A (1981) Mise en évidence de variations cycliques dans le écailles de rhizomes de Posidonia oceanica (Potamogetonaceae). Trav Sci Parc Nat Port-Cros 7: 129–135Google Scholar
  8. Fowler SW (1982) Biological transfer and trasport processes. In: Kullenberg G (ed) Pollutant transfer and transport in the sea. Vol 2 CRC Press, Boca Raton, pp 2–65Google Scholar
  9. Giraud G (1977) Contribution à la description et à la phénologie quantitative des herbiers à Posidonia oceanica (L.) Delile. Thèse Doctorat 3e cycle, Univ Aix-Marseille IIGoogle Scholar
  10. Malea P, Haritonidis S (1989) Uptake of Cu, Cd, Zn and Pb in Posidonia oceanica (Linnaeus) from Antikyra Gulf, Greece: preliminary note. Mar Environ Res 28: 495–498CrossRefGoogle Scholar
  11. Maserti B E, Ferrara R, and Paterno P (1988) Posidonia as an indicator of mercury contamination. Mar Pollut Bull 19(8): 381–382CrossRefGoogle Scholar
  12. Pergent G (1987) Recherches Lépidochronologiques chez Posidonia oceanica (Potamogetonaceae). Fluctuations des paramètres anatomiques et morphologiques des écailles des rhizomes. Thèse Doctorat, Univ Aix-Marseille IIGoogle Scholar
  13. Pergent G (1990) Lepidochronological analysis in seagrass Posidonia oceanica: a standardized approach. Aquat Bot 37: 39–54CrossRefGoogle Scholar
  14. Pergent-Martini C (1992) Contribution à l’étude des stocks et des flux d’éléments dans l’écosystème à Posidonia oceanica, D.E.S.S. Ecosystèmes méditerranéens. Université de Corse, CorteGoogle Scholar
  15. Pergent-Martini C (1998) Posidonia oceanica: a biological indicator of past and present mercury contamination. Mar Environ Res 45(2): 101–110CrossRefGoogle Scholar
  16. Romeo M, Gnassia-Barelli M, Juhel T, Meisnesz A (1995) Memorisation of heavy metals by scales of the seagrass Posidonia oceanica, collected in the NW Mediterranean. Mar Ecol Progr Ser 120: 211–218CrossRefGoogle Scholar
  17. Ward TJ (1989) The accumulation and effects of metals in seagrass habitats. In: Larkum AWD, McComb AJ, Shepherd SA (eds) Biology of Seagrass (Aquatic Plant Studies 2) Elsevier, Amsterdam, pp 787–820Google Scholar

Copyright information

© Springer-Verlag Italia 2001

Authors and Affiliations

  • M. Baroli
    • 1
  • A. Cristini
    • 2
  • A. Cossu
    • 3
  • G. De Falco
    • 1
  • V. Gazale
    • 4
  • C. Pergent-Martini
    • 5
  • G. Pergent
    • 5
  1. 1.Centro Marino InternazionaleTorregrance-OristanoItaly
  2. 2.Dipartimento di Scienze della TerraUniversità di CagliariCagliariItaly
  3. 3.Dipartimento di Botanica ed Ecologia VegetaleUniversità di SassariSassariItaly
  4. 4.Battelle-MedsarTramariglio-AlgheroItaly
  5. 5.Faculté des SciencesEq.E.L., Université de CorseCorteFrance

Personalised recommendations