Nöther Conserved Quantities and Entropy in General Relativity

  • Allemandi G. 
  • Fatibene L. 
  • Ferraris M. 
  • Francaviglia M. 
  • Raiteri M. 
Conference paper


In the framework of classical field theories, the notions of conserved quantities and entropy for stationary solutions of covariant theories of gravitation, e. g. of Einstein field equations of General Relativity, are discussed. Nöther theorem is used to provide the correct definition of (covariantly) conserved quantities such as mass and angular momentum. The variation of entropy is then defined as a macroscopical quantity which satisfies a Clausiuslike first principle of thermodynamics. Finally, a proposal for the entropy of non-stationary solutions is discussed.


Black Hole Vector Field Boundary Term Homotopy Class Black Hole Entropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Misner, W., Thome, S., Wheeler, J.A. (1970): Gravitation. W.H. Freeman and Co, San FranciscoGoogle Scholar
  2. 2.
    Penrose, R. (1982): Proc. R. Soc. London A, 381, 53MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    Hawking, S.W. (1975): Commun. Math. Phys. 43, 199MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Iyer, V., Wald, R. (1994): Phys. Rev. D 50, 846MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    Fatibene, L., Ferraris, M., Francaviglia, M., Raiteri, M. (1999): Annals of Phys. 275, 27; hep-th/9810039MathSciNetADSMATHCrossRefGoogle Scholar
  6. 6.
    Brown, J.D., York, J.W. (1993): Phys. Rev. D 47, 1420MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Carter, B. (1979): In Black Holes, ed. by S.W. Hawking, W. Israel, Cambridge University Press, CambridgeGoogle Scholar
  8. 8.
    Hawking, S.V., Ellis, G.F.R. (1973): The large scale structure of spacetime. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  9. 9.
    Frolov, V.P., Fursaev, D.V.: Thermal Fields, Entropy, and Black Holes. hep-th/9802010Google Scholar
  10. 10.
    Frolov, D.V.: Black holes entropy, and physics at Planckian scales. hep-th/9510156v3Google Scholar
  11. 11.
    Brown, J.D., York, J.W. (1993): Phys. Rev. D 47, 1407MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    Fatibene, L., Ferraris, M., Francaviglia, M., Raiteri, M.: Noether charges, Brown York quasi local energy and related topics. gr-qc/0003019, J. Math. Phys., in pressGoogle Scholar
  13. 13.
    Fatibene, L., Ferraris, M., Francaviglia, M., Raiteri, M.: Entropy in General Relativity, in Proceedings for the conference in honour of De Ritis, in pressGoogle Scholar
  14. 14.
    Brown, J.D., York, J.W: gr-qc9506085Google Scholar
  15. 15.
    Ferraris, M., Francaviglia, M. (1991): In Mechanics, Analysis and Geometry: 200 Years after Lagrange, ed. by M. Francaviglia, ElsevierGoogle Scholar
  16. 16.
    Gotay, M.J., Isenber, J., Marsden, J.E., Montgomery, R.: Momentum maps and classical relativistc fields. The Lagrangian and Hamiltonian structure of classical field theories with constrains; hep-th/9801019Google Scholar
  17. 17.
    Giachetta, G., Sardanashvily, G.: Stress energy momentum tensor in Lagrangian field theory. Part I: Superpotentials. E-print: gr-qc@xxx. lanl. gov. gr-qc/9510061Google Scholar
  18. 18.
    Trautman, A. (1962): Gravitation: an introduction to current research. Ed. by L. Witten Whiley, New York, pp. 168–198Google Scholar
  19. 19.
    Trautman, A. (1967): Commun. Math. Phys. 6, 248MathSciNetADSMATHCrossRefGoogle Scholar
  20. 20.
    Ferraris, M., Francaviglia, M., Sinicco, I.: Il Nuovo Cimento, Vol. 107B, N. 11Google Scholar
  21. 21.
    Fatibene, L., Ferraris, M., Francaviglia, M. (1997): J. Math. Phys. 38,(8), 3953–3967MathSciNetADSMATHCrossRefGoogle Scholar
  22. 22.
    Kolar, I., Michor, P.W, Slovak, J. (1993): Natural operations in differential geometry. Springer-Verlag, New YorkMATHCrossRefGoogle Scholar
  23. 23.
    Ferraris, M.: In proceedings of the conference on Differential Geometry and its applications, Part 2, Geometrical methods in Physics, ed. by D. Krupka, Brno, pp. 61–91Google Scholar
  24. 24.
    Katz, J. (1985): Class. Quantum Grav. 2, 423ADSCrossRefGoogle Scholar
  25. 25.
    Iyer, V, Wald, R.: gr-qc 9503052Google Scholar
  26. 26.
    Regge, T., Teitelboim, C. (1974): Ann. Phys. 88, 286MathSciNetADSMATHCrossRefGoogle Scholar
  27. 27.
    Fatibene, L., Francaviglia, M. (2002): Natural and Gauge Natural Formalism for Classical Field Theories. A Geometric Perspective including Spinors and Gauge Theories, in pressGoogle Scholar
  28. 28.
    Fatibene, L. (1999): Gauge-natural formalism for classical field theories. Ph.D. Thesis, University of TurinGoogle Scholar
  29. 29.
    Francaviglia, M., Ferraris, M., Reina, C. (1983): Ann. Inst. Henri Poincarè, XXXVIII, N. 4, 371–383MathSciNetGoogle Scholar
  30. 30.
    Geroch, R.P. (1970): J. Math. Phys. 11, 437–449MathSciNetADSMATHCrossRefGoogle Scholar
  31. 31.
    Brown, J.D., Lau, S.R., York, J.W.: gr-qc/0010024Google Scholar
  32. 32.
    Booth, L: gr-qc/0008030Google Scholar
  33. 33.
    Mangiarotti, L., Sardanashvily, G. (2000) Connections in classical and quantum field theory. World Scientific, SingaporeGoogle Scholar
  34. 34.
    Ferraris, M., Francaviglia, M., Robutti, O. (1984): In Atti del VI convegno nazionale di Relatività Generale e Fisica della Gravitazione, ed. by M. Modugno, Pitagora, Bologna, pp.137–150Google Scholar
  35. 35.
    Fatibene, L., Ferraris, ML, Francaviglia, M., Raiteri, M. (1999): Phys. Rev. D 60, 124012, 124013; gr-qc/9902063, gr-qc/9902065MathSciNetADSCrossRefGoogle Scholar
  36. 36.
    Fatibene, L., Ferraris, M., Francaviglia, M., Raiteri, M. (2000): Annals of Phys. 197, 2; gr-qc/9906114MathSciNetGoogle Scholar
  37. 37.
    Mann, R.B., Potvin, G., Raiteri, M. (2000): Class. Quantum Grav. 17, 23MathSciNetGoogle Scholar
  38. 38.
    Landau, L., Lifchitz, L. (1970): Statistical mechanics. 3rd edition, MIR, MoscowGoogle Scholar
  39. 39.
    Hawking, S.W., Hunter, C.J., Page, D.N.: hep-th/9809035Google Scholar
  40. 40.
    Hawking, S.W., Hunter, C.J.: hep-th/9808085 and hep-th/9807010Google Scholar
  41. 41.
    Allemandi, G., Fatibene, L., Francaviglia, M.: Remarks on the entropy of non stationary black holes. J. Math. Phys.Google Scholar
  42. 42.
    Gibbons, G.W., Hawking, S.W. (1977): Phys. Rev. D15, 2752MathSciNetADSGoogle Scholar

Copyright information

© Springer-Verlag Italia 2002

Authors and Affiliations

  • Allemandi G. 
    • 1
  • Fatibene L. 
    • 1
  • Ferraris M. 
  • Francaviglia M. 
    • 1
  • Raiteri M. 
    • 1
  1. 1.Dipartimento di MatematicaUniversità di TorinoTorinoItaly

Personalised recommendations