A Theory of Quantum Gravity from First Principles

  • G. Esposito
Conference paper


When quantum fields are studied on manifolds with boundary, the corresponding one-loop quantum theory for bosonic gauge fields with linear covariant gauges needs the assignment of suitable boundary conditions for elliptic differential operators of Laplace type. There are however deep reasons to modify such a scheme and allow for pseudo-differential boundary-value problems. When the boundary operator is allowed to be pseudo-differential while remaining a projector, the conditions on its kernel leading to strong ellipticity of the boundary-value problem are studied in detail. This makes it possible to develop a theory of one-loop quantum gravity from first principles only, i.e. the physical principle of invariance under infinitesimal diffeomorphisms and the mathematical requirement of a strongly elliptic theory.


Quantum Gravity Boundary Operator Geodesic Distance Strong Ellipticity Elliptic Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    DeWitt, B.S. (1965): Dynamical Theory of Groups and Fields. Gordon and Breach, New YorkMATHGoogle Scholar
  2. 2.
    DeWitt, B.S. (1984): The Space-Time Approach to Quantum Field Theory, in Relativity, Groups and Topology II, ed. by B.S. DeWitt, R. Stora, North-Holland, Amsterdam pp. 381–738Google Scholar
  3. 3.
    Feynman, R.P. (1948): Rev. Mod. Phys. 20, 367MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Misner, C.W. (1957): Rev. Mod. Phys. 29, 497MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    Hawking, S.W. (1979): The Path-Integral Approach to Quantum Gravity, in General Relativity, an Einstein Centenary Survey, ed. by S.W. Hawking, W Israel, Cambridge University Press, Cambridge, pp. 746–789Google Scholar
  6. 6.
    Avramidi, I.G., Esposito, G. (1999): Commun. Math. Phys. 200, 495MathSciNetADSMATHCrossRefGoogle Scholar
  7. 7.
    Grubb, G. (1974): Ann. Scuola Normale Superiore Pisa 1, 1MathSciNetGoogle Scholar
  8. 8.
    Gilkey, P.B., Smith, L. (1983): J. Diff. Geom. 18, 393MathSciNetMATHGoogle Scholar
  9. 9.
    Esposito, G. (1999): Class. Quantum Grav. 16, 3999MathSciNetADSMATHCrossRefGoogle Scholar
  10. 10.
    Esposito, G. (2000): Int. J. Mod. Phys. A 15, 4539MathSciNetADSMATHGoogle Scholar
  11. 11.
    Gilkey, P.B. (1995): Invariance Theory, the Heat Equation and the Atiyah-Singer Index theorem. Chemical Rubber Company, Boca RatonMATHGoogle Scholar
  12. 12.
    Grubb, G.(1996): Functional Calculus of Pseudodifferential Boundary Problems. Birkhäuser, BostonGoogle Scholar
  13. 13.
    Esposito, G. (1999): Class. Quantum Grav. 16, 1113MathSciNetADSMATHCrossRefGoogle Scholar
  14. 14.
    Schröder, M. (1989): Rep. Math. Phys. 27, 259MathSciNetADSMATHCrossRefGoogle Scholar
  15. 15.
    Moffat, J.W. (1990): Phys. Rev. D 41, 1177MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    Evens, D., Moffat, J.W, Kleppe, G., Woodard, R.P. (1991): Phys. Rev. D 43, 499ADSCrossRefGoogle Scholar
  17. 17.
    Marachevsky, V.N., Vassilevich, D.V. (1996): Class. Quantum Grav. 13, 645MathSciNetADSMATHCrossRefGoogle Scholar
  18. 18.
    Esposito, G., Stornaiolo, C. (2000): Int. J. Mod. Phys. A 15, 449MathSciNetADSMATHGoogle Scholar

Copyright information

© Springer-Verlag Italia 2002

Authors and Affiliations

  • G. Esposito
    • 1
  1. 1.INFN, Sezione di Napoli, Complesso Universitario di Monte S. Angelo, and Dipartimento di Scienze Fisiche, Complesso Universitario di Monte S. AngeloNapoliItaly

Personalised recommendations