T-Dualization and Symmetry Breaking

  • P.-Y. Casteill
Conference paper


We consider the most general σ -model defined on a group manifold G L G R /G D . Its metric, invariant under the action of G L , includes appropriate parameters describing all the possible breakings of the group G R . A direct computation of the Ricci tensor shows that the one-loop renormalizability of its T-dualized σ -model is strictly equivalent to the one-loop renormalizability of the original model for any symmetry breaking.


Symmetry Breaking Dualized Theory Ricci Tensor Group Manifold Loop Renormalizability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alvarez, E., Alvarez-Gaumé, L., Barbón, J.L.F., Lozano, Y. (1994): Nucl. Phys. B 415, 71ADSMATHCrossRefGoogle Scholar
  2. 2.
    Alvarez, E., Alvarez-Gaumé, L., Lozano, Y. (1995): Nucl. Phys. Proc. Suppl. 41, 1ADSMATHCrossRefGoogle Scholar
  3. 3.
    Giveon, A., Porrati, M., Rabinovici, E. (1994): Phys. Rep. 244, 77MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Alvarez, E., Alvarez-Gaumé L., Lozano, Y (1994): Phys. Lett. B 336, 183MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    Giveon,A., Rabinovici, E., Veneziano, G. (1989): Nucl. Phys. B 322, 167; cern-th. 5106/88MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Curtright, T., Zachos, C. (1994): Phys. Rev. D 49, 183MathSciNetCrossRefGoogle Scholar
  7. 7.
    Lozano, Y (1995): Phys. Lett. B 355, 165MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Sfetsos, K. (1996): Phys. Rev. D 54, 1682MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Fridling, B.E., Jevicki, A. (1984): Phys. Lett. B 134, 70ADSCrossRefGoogle Scholar
  10. 10.
    Fradkin, E.S., Tseytlin, A.A. (1985): Ann. Phys. 162, 31MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    Tyurin, E. (1995): Phys. Lett. B 348, 386MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    Balázs, L.K., Balog, J., Forgács, P., Mohammedi, N., Palla, L., Schnittger, J. (1998): Phys. Rev. D 57, 3585MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Horváth, Z., Karp, R.L., Palla, L.: hep-th/9609198Google Scholar
  14. 14.
    Buscher, T. (1987): Phys. Lett. B 194, 59MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    Buscher, T. (1988): Phys. Lett. B 201, 466MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    Casteill, P.Y, Valent, G. (2000): Quantum structure of T-dualized models with symmetry breaking. Nucl. Phys. B 591, 491; hep-th/0006186MathSciNetADSMATHCrossRefGoogle Scholar
  17. 17.
    Friedan, D. (1985): Ann. Phys. 163, 1257MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Italia 2002

Authors and Affiliations

  • P.-Y. Casteill
    • 1
  1. 1.Laboratoire de Physique Theorique et des Hautes EnergiesUnite associé au CNRS URA 280, University of Paris 7Paris Cedex 05France

Personalised recommendations