Advertisement

Instantons and Scattering

  • Bonelli G. 
  • Bonora L. 
  • Nesti F. 
  • Tomasiello A. 
  • Terna S. 
Conference paper

Abstract

This is a review of some recent developments in the study of classical solutions of Yang-Mills theories in various dimensions and their significance in the path integral of the corresponding theories. These particular solutions are called instantons because of their kinship with ordinary instantons. Just as ordinary instantons interpolate between different vacua, the new instantons interpolate between different asymptotic states. Therefore they represent scattering phenomena. Here we review the two dimensional and four dimensional Yang-Mills case.

Keywords

Modulus Space Riemann Surface Branch Point Vertex Operator Zero Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Banks, T., Fischler, W., Shenker, S.H., Susskind, L. (1997): M Theory as a matrix model: A conjecture. Phys. Rev. D 55, 5112; hepth/9610043]MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    Motl, L.: Proposals on nonperturbative superstring interactions; hepth/9701025Google Scholar
  3. 3.
    Banks, T., Sciberg, N. (1997): Strings from matrices. Nucl. Phys. B 497, 41; hepth/9702187ADSMATHCrossRefGoogle Scholar
  4. 4.
    Taylor, W. (1997): D-brane field theory on compact spaces. Phys. Lett. B 394, 283; hepth/9611042MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    Dijkgraaf, R., Verlinde, E., Verlinde, H. (1997): Matrix string theory. Nucl. Phys. B 500, 43; hepth/9703030MathSciNetADSMATHCrossRefGoogle Scholar
  6. 6.
    Bonora, L., Chu, C.S. (1997): On the string interpretation of M(atrix) Theory. Phys. Lett. B 410, 142; hepth/9705137MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Wynter, T. (1997): Gauge fields and interactions in matrix string theory. Phys. Lett. B 415, 349; hepth/9709029]MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Giddings, S.B., Hacquebord, F., Verlinde, H. (1999): High energy scattering of D-pair creation in matrix string theory. Nucl. Phys. B 537 260; hepth/9804121MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9.
    Bonelli, G., Bonora, L., Nesti, F. (1998): Matrix string theory, ID instantons and affine Toda field theory. Phys. Lett. B 435, 303; hepth/9805071]MathSciNetADSMATHCrossRefGoogle Scholar
  10. 10.
    Bonelli, G., Bonora, L., Nesti, F. (1999): String interactions from matrix string theory. Nucl. Phys. B 538, 100; hepth/9807232MathSciNetADSMATHCrossRefGoogle Scholar
  11. 11.
    Bonelli, G., Bonora, L., Nesti, F., Tomasiello, A.: Matrix string theory and its moduli space; hepth/9901093, to be published in Nucl. Phys. BGoogle Scholar
  12. 12.
    Bonora, L. (2000): Yang-Mills Theory and matrix string theory, in Quantum field theory. A 20th century profile, ed. by A.N. Mitra, Industan Book AgencyGoogle Scholar
  13. 13.
    Bonelli, G., Bonora, L., Terna, S., Tomasiello, A.: Instantons and scattering in N = 4 SYM in 4D; hepth/9912227Google Scholar
  14. 14.
    Hitchin, N.J. (1987): The self-duality equations on a Riemann surface. Proc. London Math. Soc. 55, 59; (1992): Lie groups and Teichmüller space. Topology 31, 449MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Green, M.B., Schwarz, J.H., Witten, E. (1987): Superstring theory. Cambridge University Press, CambridgeMATHGoogle Scholar
  16. 16.
    Bonelli, G., Bonora, L., Nesti, F., Tomasiello, A.: Heterotic matrix string theory and Riemann surfaces; [hepth/9905092Google Scholar
  17. 17.
    Terna, S. (2000): PhD Thesis, TriesteGoogle Scholar
  18. 18.
    Polchinski, J., Pouliot, P.: Membrane scattering with M-momentum transfer; hepth/9704029Google Scholar

Copyright information

© Springer-Verlag Italia 2002

Authors and Affiliations

  • Bonelli G. 
    • 1
  • Bonora L. 
    • 2
  • Nesti F. 
    • 3
  • Tomasiello A. 
    • 4
  • Terna S. 
    • 3
  1. 1.Spinoza InstituteUniversity of UtrechtCE UtrechtThe Netherlands
  2. 2.S.I.S.S.A., ISASTriesteItaly
  3. 3.International School for Advanced Studies (S.I.S.S.A./ISAS), and INFN, Sezione di TriesteTriesteItaly
  4. 4.International School for Advanced Studies (S.I.S.S.A./ISAS)TriesteItaly

Personalised recommendations