Trajectories for Relativistic Particles in an Electromagnetic Field

  • E. Caponio
  • A. Masiello
Conference paper


We present a variational theory for the trajectories of a massive, charged particle in a relativistic spacetime with an electromagnetic field. We state some result on the existence and the multiplicity of such trajectories joining two points, assuming that the spacetime is standard stationary and the electromagnetic field is constant with respect to the standard time coordinate. The results are obtained using critical point theory for functionals on infinite dimensional manifolds and the topological properties of the spacetime.


Critical Point Theory Lorentzian Manifold Timelike Curve Smooth Vector Field Lorentzian Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beem, J.K., Ehrlich, P.E., Easley, K.L. (1996): Global Lorentzian Geometry. 2nd Edition. Marcel Dekker, New York-BaselMATHGoogle Scholar
  2. 2.
    O’Neill, B. (1983): Semiriemannian Geometry with Applications to Relativity. Academic Press, New YorkGoogle Scholar
  3. 3.
    Hawking, S.W., Ellis, G.F.R. (1972): The Large Scale Structure of Space-Time. Cambridge University Press, CambridgeGoogle Scholar
  4. 4.
    Masiello, A. (2000): Applications of Calculus of Variations to General Relativity, in Recent Developments in General Relativity, 13th Italian Conference on General Relativity and Gravitational Physics, Monopoli, Italy, September 18–22, 1998, ed. by B. Casciaro, D. Fortunato, M. Francaviglia, A. Masiello. Springer-Verlag, Milano, pp. 173–195Google Scholar
  5. 5.
    Landau, L., Lifschitz, L. (1970): Théorie des Champs. Mir, MoscowGoogle Scholar
  6. 6.
    Thirring, W. (1992): Classical Mathematical Physics. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  7. 7.
    Benci, V, Fortunato, D. (1998): Found. Phys. 26, 333MathSciNetCrossRefGoogle Scholar
  8. 8.
    Masiello, A. (1994): Variational Methods in Lorentzian Geometry. Pitman Research Notes in Mathematics 309 Longman, LondonGoogle Scholar
  9. 9.
    Caponio, E., Masiello, A. (2001): Non linear analysis, in pressGoogle Scholar

Copyright information

© Springer-Verlag Italia 2002

Authors and Affiliations

  • E. Caponio
    • 1
  • A. Masiello
    • 2
  1. 1.Dipartimento di Matematica “U. Dini”Università di FirenzeFirenzeItaly
  2. 2.Dipartimento di Matematica, Politecnico di BariBariItaly

Personalised recommendations