Quantum Zeno Effect and the Detection of Gravitomagnetism

  • A. Camacho
Conference paper


In this work we introduce two experimental proposals that could shed some light upon the inertial properties of the intrinsic spin. In particular we will analyze the role that the gravitomagnetic field of the Earth could have on a quantum system with spin 1/2. We will first deduce the expression for the Rabi transitions, which depend explicitly, on the coupling between the spin of the quantum system and the gravitomagnetic field of the Earth. Then the continuous measurement of the energy of the spin 1/2 system is considered, and an expression for the emerging quantum Zeno effect is obtained. Thus, it will be proved that gravitomagnetism, in connection with spin 1/2 systems, could induce not only Rabi transitions but also a quantum Zeno effect.


Angular Momentum Quantum System Quantum Measurement Weak Field Constant Magnetic Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ciufolini, I. and Wheeler, J.A. ( 1995): Gravitation and Inertia. Princeton University Press, Princeton, NJMATHGoogle Scholar
  2. 2.
    Lense, J., Thirring, H. (1918): Phys. Z. 19, 711–750Google Scholar
  3. 3.
    Friedländer, B., Friedländer, I. (1896): Absolute und relative Bewegung. Simion-Verlag, BerlinGoogle Scholar
  4. 4.
    Braginsky, V.B., Polnarev, A.G., Thome, K.S. (1984): Phys. Rev Lett. 53, 863–866ADSCrossRefGoogle Scholar
  5. 5.
    Vitale, S., Bonaldi, M., Falferi, P., Prodi, G.A., Cerdonio, M. (1989): Phys. Rev. B 39, 11993–12002ADSCrossRefGoogle Scholar
  6. 6.
    Ciufolini, L, Pavlis, E., Chieppa, F, Fernandes-Vieira, E., Pérez-Mercader, J. (2000): Science 279, 2100–2103ADSCrossRefGoogle Scholar
  7. 7.
    Mashhoon, B. (1999): Gen. Rel. Grav. 31, 681–691MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    Boyer, R.H., Lindquist, R.W. (1967): J. Math. Phys. 8, 265–281MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9.
    Sakurai, J.J. (1995): Modem Quantum Mechanics. Addison-Wesley, Reading, MAGoogle Scholar
  10. 10.
    Mensky, M.B. (1993): Continuous Quantum Measurements and Path Integrals. IOP, Bristol and PhiladelphiaGoogle Scholar
  11. 11.
    Presilla, C., Onofrio, R., Tambini, U. (1996): Ann. Phys. 248, 95–121MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2002

Authors and Affiliations

  • A. Camacho
    • 1
  1. 1.Abel Astrophysikalisches Institut PotsdamPotsdam BrandenburgGermany

Personalised recommendations