Gravitational Waves and the Death-Spiral of Compact Binaries

  • C.M. Will
Conference paper


The completion of a network of advanced laser-interferometric gravitational-wave observatories will make possible the study of the inspirai and coalescence of binary systems of compact objects (neutron stars and black holes), using gravitational radiation. To extract useful information from the waves, theoretical general relativistic gravitational waveform templates of extremely high accuracy will be needed for filtering the data, probably as accurate as O[(υ/c)6] beyond the predictions of the quadrupole formula. We review theoretical methods for calculating accurate waveforms, and focus on one known as Direct Integration of the Relaxed Einstein Equations (DIRE). The new method is free of divergences or undefined integrals, correctly predicts all gravitational wave “tail” effects caused by backscatter of the outgoing radiation off the background curved spacetime, and yields radiation that propagates asymptotically along true null cones of the curved spacetime. The method also yields equations of motion through O[(υ/c)4 ], radiation-reaction terms at O[(υ/c)5 ] and O[(υ/c)7 ], and gravitational waveforms and energy flux through O[(υ/c)4 ], in agreement with other approaches. We report on progress in evaluating the O[(υ/c)6 ] contributions.


Neutron Star Gravitational Wave Gravitational Radiation Null Cone Compact Binary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Thorne, K.S. (1995): Gravitational Waves, in Proceedings of the Snowmass 95 Summer Study on Particle and Nuclear Astrophysics and Cosmology, ed. by E. W. Kolb, R. Peccei, World Scientific, Singapore pp. 398–425; gr-qc/9506086Google Scholar
  2. 2.
    Finn, L.S., Chernoff, D.F. (1993): Phys. Rev. D 47, 2198; gr-qc/9301003; Cutler, C., Flanagan, É.E. (1994): Phys. Rev. D 49, 2658; gr-qc/9402014; Poisson, E. and Will, CM. (1995): Phys. Rev. D52, 848; gr-qc/9502040; Damour, T., Iyer, B.R., Sathyaprakash, B.S. (1998): Phys. Rev. D57, 885; Poisson, E.: In: Proceedings of the Second Gravitational-Wave Data Analysis Workshop, in pressADSCrossRefGoogle Scholar
  3. 3.
    Wagoner, R.V., Will, C.M. (1976): Astrophys. J. 210, 764ADSCrossRefGoogle Scholar
  4. 4.
    Walker, M., Will, C.M. (1980): Phys. Rev. Lett. 45, 1741; Anderson, J.L. (1980): Phys. Rev. Lett. 45, 1745; Damour, T. (1983): Phys. Rev. Lett. 51, 1019; D. Christodoulou, B. G. Schmidt, (1979): Commun. Math. Phys. 68, 275; Isaacson, R.A., Welling, J.S., Winicour, J. (1984): Phys. Rev. Lett. 53, 1870MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    Blanchet, L., Damour, T. (1986): Phil. Trans. R. Soc. London A 320, 379; Blanchet, L., Damour, T. (1988): Phys. Rev. D 37, 1410; Blanchet, L., Damour, T. (1989): Ann. Inst. H. Poincaré (Phys. Theorique) 50, 377; Damour, T., Iyer, B.R. (1991): Ann. Inst. H. Poincaré (Phys. Theorique) 54, 115; Blanchet, L. (1995): Phys. Rev. D 51, 2559; gr-qc/9501030; Blanchet, L., Damour, T. (1992): Phys. Rev. D 46, 4304MathSciNetADSMATHCrossRefGoogle Scholar
  6. 6.
    Thorne, K.S. (1980): Rev. Mod. Phys. 52, 299MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Epstein, R., Wagoner, R.V. (1975): Astrophys. J. 197, 717 (EW)MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Mino, Y., Sasaki, M., Shibata, M., Tagoshi, H. and Tanaka, T. (1997): Prog. Theor. Phys. [Suppl.] 128, 1; gr-qc/9712057MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Wiseman, A.G. (1992): Phys. Rev. D 46, 1517ADSCrossRefGoogle Scholar
  10. 10.
    Will, C.M., Wiseman, A.G. (1996): Phys. Rev. D 54, 4813; gr-qc/9608012ADSCrossRefGoogle Scholar
  11. 11.
    Wiseman, A.G., Will, CM. (1991): Phys. Rev. D44, R2945MathSciNetADSGoogle Scholar
  12. 12.
    Pati, M.E., Will, CM. (2001): Phys. Rev. D 62, 124015; gr-qc/0007087MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Damour, T. (1987): The problem of motion in Newtonian and Einsteinian gravity, in 300 Years of Gravitation, ed. by S.W. Hawking, W. Israel, Cambridge University Press, Cambridge, pp. 128–198Google Scholar
  14. 14.
    Blanchet, L., Faye, G., Ponsot, B. (1998): Phys. Rev. D 58, 124002; gr-qc/9804079)ADSCrossRefGoogle Scholar
  15. 15.
    Jaranowski, P., Schäfer, G. (1998): Phys. Rev. D 57, 7274; gr-qc/9712075; Jaranowski, P., Schäfer, G. (1999): Phys. Rev. D 60, 124003; gr-qc/9906092MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    Blanchet, L., Faye, G. (2000): Phys. Lett. A271, 58; Blanchet, L., Faye, G. (2001): Phys. Rev. D63, 062005MathSciNetADSGoogle Scholar
  17. 17.
    Iyer, B., Will, C.M. (1995): Phys. Rev. D 52, 6882ADSCrossRefGoogle Scholar
  18. 18.
    Blanchet, L. (1993): Phys. Rev. D47, 4392ADSCrossRefGoogle Scholar
  19. 19.
    Blanchet, L., Damour, T., Iyer, B.R. (1995): Phys. Rev. D 51, 5360; gr-qc/9501029ADSCrossRefGoogle Scholar
  20. 20.
    Kidder, L.E., Will, C.M., Wiseman, A.G. (1993): Phys. Rev. D 47, R4183; gr-qc/9211025; Kidder, L.E. (1995): Phys. Rev. D 52, 821; gr-qc/9506022ADSCrossRefGoogle Scholar
  21. 21.
    Blanchet, L., Damour, T., Iyer, B.R., Will, CM., Wiseman, A.G.: Phys. Rev. Lett. 74, 3515; gr-qc/9501027Google Scholar
  22. 22.
    Blanchet, L., Iyer, B.R., Will, CM., Wiseman, A.G. (1996): Class. Quantum Grav. 13, 575; gr-qc/9602024ADSMATHCrossRefGoogle Scholar
  23. 23.
    Will, C.M. (1999): Physics Today 52, 38 (October)CrossRefGoogle Scholar
  24. 24.
    Will, C.M. (2001): Living Reviews in Relativity. 4, 4; gr-qc/0103036MathSciNetADSGoogle Scholar
  25. 25.
    Will, C.M. (1999): Prog. Theor. Phys. [Suppl.] 136, 158ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2002

Authors and Affiliations

  • C.M. Will
    • 1
  1. 1.Department of PhysicsWashington UniversitySt. Louis MOUSA

Personalised recommendations