Advertisement

Anti-de Sitter Quantum Field Theory and the AdS-CFT Correspondence

  • U. Moschella
Conference paper

Abstract

We give a short account of a new approach to anti-de Sitter Quantum Field Theory that is based on the assumption of certain analyticity properties of the n-point correlation functions. We then discuss the application of this formalism to the construction of conformai field theories that are naturally obtained on the covering of the cone asymptotic to the AdS manifold, and that satisfy the axioms of Luscher an Mack.

Keywords

Spectral Condition Asymptotic Cone Wightman Function Global Hyperbolicity Local Commutativity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Maldacena, J.J.: Adv. Theor. Math. Phys. 2, 231; hep-th/9711200Google Scholar
  2. 2.
    Fronsdal, C. (1974): Phys. Rev. D 10, 589MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    Dirac, P.A.M. (1935): Ann. Math. 36, 657MathSciNetCrossRefGoogle Scholar
  4. 4.
    Avis, S.J., Isham, C.J., Storey, D. (1978): Phys. Rev. D 18, 3565MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    Luscher, M., Mack, G. (1975): Commun. Math. Phys. 41, 203MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Gubser, S.S., Klebanov, I.R., Polyakov, A.M. (1998): Phys. Lett. B 428, 105; hep-th/9802109MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Witten, E. (1998): Adv. Theor. Math. Phys. 2, 253; hep-th/9802150MathSciNetADSMATHGoogle Scholar
  8. 8.
    Aharony, O., Gubser, S.S., Maldacena, J., Ooguri, H., Oz, Y. (2000): Phys. Rept. 323, 183MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Bros J., Epstein, H., Moschella, U. (1998): In preparationGoogle Scholar
  10. 10.
    Bertola, M., Bros, J., Moschella, U. and Schaeffer, R. (2000): Nucl. Phys. B 587, 619; hep-th/9908140MathSciNetADSMATHCrossRefGoogle Scholar
  11. 11.
    Bertola, M., Bros, J., Gorini, V., Moschella, U., Schaeffer, R. (2000): Nucl. Phys. B 581, 575; hep-th/0003098MathSciNetADSMATHCrossRefGoogle Scholar
  12. 12.
    Streater, R.F., Wightman, A.S. (1964): PCT, spin and statistics, and all that. W.A. BenjaminGoogle Scholar
  13. 13.
    Bros, J., Epstein, H., Moschella, U. (1998): Commun. Math. Phys. 196, 535; gr-qc/9801099MathSciNetADSMATHCrossRefGoogle Scholar
  14. 14.
    Mack, G., Todorov, LT. (1973): Phys. Rev. D 8, 1764ADSCrossRefGoogle Scholar
  15. 15.
    Bateman, H. (1954): Higher transcendental functions. McGraw-HillGoogle Scholar
  16. 16.
    Breitenlohner, P., Freedman, D.Z. (1982): Ann. Phys. 144, 249MathSciNetADSMATHCrossRefGoogle Scholar
  17. 17.
    Klebanov, I.R., Witten, E. (1999): Nucl. Phys. B 556, 89MathSciNetADSMATHCrossRefGoogle Scholar
  18. 18.
    Giddings, S.B. (1999): Phys. Rev. D 61, 106008MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    Callan, C.G., Wilczek, F. (1990): Nucl. Phys. B 340, 366ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2002

Authors and Affiliations

  • U. Moschella
    • 1
    • 2
  1. 1.Dipartimento di Scienze Matematiche Fisiche e ChimicheUniversitá dell’InsubriaComo
  2. 2.INFNMilanoItaly

Personalised recommendations