Advertisement

Covariant Quantum Mechanics and Quantum Symmetries

  • J. Janyška
  • M. Modugno
  • D. Saller

Abstract

We sketch the basic ideas and results on the covariant formulation of quantum mechanics on a curved spacetime with absolute time equipped with given gravitational and electromagnetic fields. Moreover, we analyse the classical and quantum symmetries and show their relations.

Keywords

Quantum Mechanic Curve Spacetime Geometric Quantization Quantum Structure Quantisable Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jadczyk, A., Modugno, M. (1992): An outline of a new geometric approach to Galilei general relativistic quantum mechanics. in Differential geometric methods in theoretical physics, ed. by C. N. Yang, M. L. Ge and X. W. Zhou, World Scientific, Singapore, pp. 543–556Google Scholar
  2. 2.
    Jadczyk, A., Modugno, M. (1993): A scheme for Galilei general relativistic quantum mechanics, in Proceedings of the 10th Italian Conference on general relativity and gravitational physics, Bardonecchia, 1–5 September, ed. by M Cerdonio, R. D’Auria, M. Francariglia, G. Magnano, World Scientific, New YorkGoogle Scholar
  3. 3.
    Jadczyk, A., Modugno, M. (1994): Galilei general relativistic quantum mechanics. Report Dept. Appl. Math, Univ. of Florence, pp. 215Google Scholar
  4. 4.
    Abraham, R., Marsden, J.E. (1978): Foundations of Mechanics. 2nd ed., Benjamin-CummingsGoogle Scholar
  5. 5.
    Janyška, J. (1995): Remarks on symplectic and contact 2-forms in relativistic theories. Bollettino U.M.L 7, 9-B, 587–616Google Scholar
  6. 6.
    Janyška, J. (1995): Natural quantum Lagrangians in Galilei general relativistic quantum Lagrangians. Rendiconti di Matematica, S. VII, Vol. 15, Roma, 457–468MATHGoogle Scholar
  7. 7.
    Modugno, M., Vitolo, M. (1996): Quantum connection and Poincaré-Cartan form, in Gravitation, electromagnetism and geometrical structures, ed. by G. Ferrarese, Pitagora, Bologna, 237–279Google Scholar
  8. 8.
    Janyška, J., Modugno, M. (1996): Relations between linear connections on the tangent bundle and connections on the jet bundle of a fibred manifold. Arch. Math. (Brno), 32, 281–288; http://www.emis.de/journalsMathSciNetMATHGoogle Scholar
  9. 9.
    Vitolo, R. (1996): Spherical symmetry in classical and quantum Galilei general relativity. Annales de l’Institut Henri Poincaré, 64,(2), 177–203MathSciNetMATHGoogle Scholar
  10. 10.
    Vitolo, R. (1996): Quantum structures in general relativistic theories. In Proceedings of the XII Italian Conference on General Relativity and Gravitational Physics, Roma, 1996; World Scientific, SingaporeGoogle Scholar
  11. 11.
    Janyška, J., Modugno, M. (1999): On the graded Lie algebra of quantisable forms, in Differential Geometry and Applications, ed. by I. Kolář, O. Kowalski, D. Krupka, J. Slovak, Proceedings of the 7th International Conference, Brno, 10–14 August 1998, Masaryk University, 601–620Google Scholar
  12. 12.
    Vitolo, R. (1998): Quantising the rigid body. In: Proceedings of the VII Conference on Differential Geometry and Applications, Brno 1998, 653–664Google Scholar
  13. 13.
    Vitolo, R. ( 1999): Quantum structures in Galilei general relativity. Ann. Inst.’ H. Poinc. 70,(3), 239–257MathSciNetMATHGoogle Scholar
  14. 14.
    Janyška, J. (2001): A remark on natural quantum Lagrangians and natural generalized Schrödinger operators in Galilei quantum mechanics, in Proceedings of the 20th Winter School of geometry and physics, Srni, January 15–22, 2000, Supplemento ai rendiconti del Circolo Matematico di Palermo, Serie II, Numero 66, pp. 117–128Google Scholar
  15. 15.
    Modugno, M., Tejero Prieto, C., Vitolo, R. (2000): Comparison between geometric quantisation and covariant quantum mechanic, in Proceedings Lie Theory and Its Applications in Physics — Lie III, 11–14 July 1999, Clausthal, Germany, ed. by H.-D. Doebner, V.K. Dobrev, J. Hilgert, World Scientific, Singapore, 155–175Google Scholar
  16. 16.
    Sailer, D., Vitolo, R. (2000): Symmetries in covariant classical mechanics. J. Math. Phys. 41(10), 6824–6842MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    Trautman, A. (1963): Sur la théorie Newtonienne de la gravitation. C. R. Acad. Sc. Paris t. 257, 617–620MathSciNetMATHGoogle Scholar
  18. 18.
    Trautman, A. (1966): Comparison of Newtonian and relativistic theories of space-time, in Perspectives in geometry and relativity, N. 42, Indiana University press, 413–425MathSciNetGoogle Scholar
  19. 19.
    Dombrowski, H.D., Horneffer, K. (1964): Die Differentialgeometrie des Galileischen Relativitätsprinzips. Math. Z. 86, 291–311MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Duval, C. (1985): The Dirac & Levy-Leblond equations and geometric quantization, in Diff. Geom. Meth. in Math. Phys., Proceedings of the 14th International Conference held in Salamanca, Spain, June 24–29, ed. by P.L. García, A. Pérez-Rendón, L.N.M. 1251, Springer-Verlag, Berlin, pp. 205–221Google Scholar
  21. 21.
    Duval, C. (1993): On Galilean isometries. Clas. Quant. Grav. 10, 2217–2221MathSciNetADSMATHCrossRefGoogle Scholar
  22. 22.
    Duval, C., Burdet, G., Künzle, H.P., Perrin, M. (1985): Bargmann structures and Newton-Cartan theory. Phys. Rev. D 31(8), 1841–1853MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    Duval, C., Gibbons, G., Horvaty, P. (1991): Celestial mechanics, conformai structures, and gravitational waves. Phys. Rev. D 43(12), 3907–3921MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    Duval, C., Künzle, H.P. (1984): Minimal gravitational coupling in the Newtonian theory and the covariant Schr odinger equation. G.R.G. 16(4), 333–347CrossRefGoogle Scholar
  25. 25.
    Ehlers, J. (1989): The Newtonian limit of general relativity, in Fisica matematica classica e relatività, Rapporti e Compatiilitá, Elba 9–13 giugno 1989, pp. 95–106Google Scholar
  26. 26.
    Havas, P. (1964): Four-dimensional formulation of Newtonian mechanics and their relation to the special and general theory of relativity. Rev. Modern Phys. 36, 938–965MathSciNetADSMATHCrossRefGoogle Scholar
  27. 27.
    Kuchař, K. (1980): Gravitation, geometry and nonrelativistic quantum theory. Phys. Rev. D 22(6), 1285–1299MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    Künzle, H.R (1972): Galilei and Lorentz structures on space-time: comparison of the corresponding geometry and physics. Ann. Inst. H. Poinc. 17(4), 337–362Google Scholar
  29. 29.
    Künzle, H.P. (1974): Galilei and Lorentz invariance of classical particle interaction. Symposia Mathematica 14, 53–84Google Scholar
  30. 30.
    Künzle, H.P. (1976): Covariant Newtonian limit of Lorentz space-times. G.R.G. 7(5), 445–457MATHGoogle Scholar
  31. 31.
    Künzle, H.P. (1984): General covariance and minimal gravitational coupling in Newtonian spacetime, in Geometrodynamics Proceedings, ed by A. Prastaro, Tecnoprint, Bologna, pp. 37–48Google Scholar
  32. 32.
    Künzle, H.R, Duval, C. (1984): Dirac field on Newtonian space-time. Ann. Inst. H. Poinc. 41(4), 363–384MATHGoogle Scholar
  33. 33.
    Le Bellac, M., Levy-Leblond, J.M. (1973): Galilean electromagnetism. Nuovo Cim. B 14(2), 217–233Google Scholar
  34. 34.
    Levy-Leblond, J.M. (1971): Galilei group and Galilean invariance, in Group theory and its applications, ed. by E. M. Loebl, Vol. 2, Academic, New York, pp. 221–299Google Scholar
  35. 35.
    Mangiarotti, L. (1979): Mechanics on a Galilean manifold. Riv. Mat. Univ. Parma 5(4), 1–14MathSciNetGoogle Scholar
  36. 36.
    Schmutzer, E., Plebanski, E. (1977): Quantum mechanics in non inertial frames of reference. Fortschritte der Physik 25, 37–82MathSciNetADSCrossRefGoogle Scholar
  37. 37.
    Tulczyjew W.M. (1981): Classical and quantum mechanics of particles in external gauge fields. Rend. Sem. Mat. Univ. Torino 39, 111–124MathSciNetMATHGoogle Scholar
  38. 38.
    Tulczyjew, W.M. (1985): An intrinsic formulation of nonrelativistic analytical mechanics and wawe mechanics. J. Geom. Phys. 2,(3), 93–105MathSciNetADSMATHCrossRefGoogle Scholar
  39. 39.
    Kolář, I., Michor, P., Slovák, J. (1993): Natural operations in differential geometry. Springer-Verlag, BerlinMATHGoogle Scholar
  40. 40.
    Libermann, P., Marie, Ch.M. (1987): Symplectic geometry and analytical mechanics. Reidel Publ., DordrechtMATHCrossRefGoogle Scholar
  41. 41.
    Woodhouse N. (1992): Geometric quantization. Second Edn, Clarendon Press, OxfordMATHGoogle Scholar
  42. 42.
    Janyška, J., Modugno, M. (1996): Classical particle phase space in general relativity, in Proc. Conf. Diff. Geom. Appl., Brno 28 August-1 September 1995, Masaryk University, 1996, ed. by J. anyška, I. Kolar, J. Slovak, pp. 573–602; http://www.emis.de/proceedings
  43. 43.
    Janyska, J. (1998): Natural Lagrangians for quantum structures over 4-dimensional spaces. Rendiconti di Matematica, S. VII, Vol. 18, Roma, 623–648MathSciNetMATHGoogle Scholar
  44. 44.
    Janyška, J., Modugno, M. (2000): Quantisable functions in general relativity, in Opérateurs différentiels et Physique Mathématique, ed. by J. Vaillant, J. Carvalho e Silva, Textos Mat. Ser. B, 24, 161–181Google Scholar
  45. 45.
    Janyška, J., Modugno, M. ( 1997): On quantum vector fields in general relativistic quantum mechanics. General Mathematics 5, Proceeding of the 3rd International Workshop on Differential Geometry and its Applications, Sibiu (Romania) 1997, 199–217Google Scholar
  46. 46.
    Jadczyk, A., Janyška, J., Modugno, M. (1998): Galilei general relativistic quantum mechanics revisited, in Geometria, física-matemática e outros ensaios, ed. by A.S. Alves, F.J. Craveiro de Carvalho, J.A. Pereira da Silva, Departamento de Matematica, Universidade de Coimbra, Coimbra, pp. 253–313Google Scholar
  47. 47.
    García, PL. (1972): Connections and 1-jet fibre bundle. Rendic. Sem. Mat. Univ. Padova 47, 227–242MATHGoogle Scholar
  48. 48.
    Canarutto, D., Jadczyk, A., Modugno, M. (1995): Quantum mechanics of a spin particle in a curved spacetime with absolute time. Rep. on Math. Phys. 36, 1, 95–140MathSciNetGoogle Scholar

The following additional references are useful for a comparison with the current literature

  1. Albert, C. (1989): Le théorème de reduction de Marsden-Weinstein en géométrie cosymplectique et de contact. J. Geom. Phys. 6(4), 627–649MathSciNetADSMATHCrossRefGoogle Scholar
  2. Balachandran, A.P., Gromm, H., Sorkin, R.D. (1987): Quantum symmetries from quantum phases. Fermions from Bosons, a Z2 Anomaly and Galileian Invariance. Nucl. Phys. B 281, 573–583ADSCrossRefGoogle Scholar
  3. Cattaneo, V. (1970): Invariance Relativiste, Symetries Internes et Extensions d’Algébre de Lie. Thesis Université Catholique de LouvainGoogle Scholar
  4. de Leon, M., Marrero, J.C., Padron, E. (1997): On the geometric quantization of Jacobi manifolds. J. Math. Phys. 38,(12), 6185–6213MathSciNetADSMATHCrossRefGoogle Scholar
  5. Fanchi, J.R. (1993): Review of invariant time formulations of relativistic quantum theories. Found. Phys. 23, 487–548MathSciNetADSCrossRefGoogle Scholar
  6. Fanchi, J.R. (1994): Evaluating the validity of parametrized relativistic wave equations. Found. Phys. 24, 543–562MathSciNetADSCrossRefGoogle Scholar
  7. Fernández, M., Ibañez, R., de Leon, M. (1996): Poisson cohomology and canonical cohomology of Poisson manifolds. Archivium Mathematicum (Brno) 32, 29–56MATHGoogle Scholar
  8. Gotay, M.J. (1986): Constraints, reduction and quantization. J. Math. Phys. 27(8), 2051–2066MathSciNetADSMATHCrossRefGoogle Scholar
  9. Horwitz, L.P. (1992): On the definition and evolution of states in relativistic classical and quantum mechanics. Foun. Phys. 22, 421–448MathSciNetADSCrossRefGoogle Scholar
  10. Horwitz, L.P, Rotbart, FC. (1981): Non relativistic limit of relativistic quantum mechanics. Phys. Rev. D 24, 2127–2131MathSciNetADSCrossRefGoogle Scholar
  11. Kyprianidis, A. (1987): Scalar time parametrization of relativistic quantum mechanics: The covariant Schr odinger formalism. Phys. Rep 155, 1–27MathSciNetADSCrossRefGoogle Scholar
  12. Marmo, G., Morandi, G., Simoni. A. (1988): Quasi-invariance and central extensions. Phys. Rev. D 37, p. 2196–2206MathSciNetADSCrossRefGoogle Scholar
  13. Marsden, J.E., Ratiu, T. (1995): Introduction to mechanics and symmetry. Texts in Appl. Math. 17, Springer, New YorkGoogle Scholar
  14. Michel, L. (1965): Invariance in quantum mechanics and group extensions, in Group Theoretical Concepts and Methods in Elememtary Particle Physics, ed. by F. Gürsey, Gordon and Breach, New YorkGoogle Scholar
  15. Peres, A. (1995): Relativistic quantum measurements, in Fundamental problems of quantum theory, Ann. N. Y. Acad. Sci., 755 Google Scholar
  16. Piron, C., Reuse, F. (1979): On classical and quantum relativistic dynamics. Found. Phys. 9, 865–882MathSciNetADSCrossRefGoogle Scholar
  17. Simms, D.J. (1968): Lie groups and quantum mechanics, in Lect. Notes Math., Vol. 52, Springer, Berlin Heidelberg New YorkGoogle Scholar
  18. Simms, D.J., Woodhouse, N. (1977): Lectures on Geometric Quantization. Lect. Notes Phys. 53, Springer, Berlin Heidelberg New YorkGoogle Scholar
  19. Sniaticki, J. (1980): Geometric quantization and quantum mechanics. Springer-Verlag, New YorkCrossRefGoogle Scholar
  20. Tuynman, G.M., Wigerinck, W.A.J.J. (1987): Central extensions and physics. J. Geom. Phys. 4,(3), 207–258MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2002

Authors and Affiliations

  1. 1.Department of MathematicsMasaryk UniversityBrnoCzech Republic
  2. 2.Dipartimento di Matematica ApplicataFirenzeItaly
  3. 3.Department of MathematicsMannheim UniversityMannheimGermany

Personalised recommendations