Advertisement

Hamiltonian Structure of 2+1 Dimensional Gravity

  • Menotti P. 
Conference paper

Abstract

A summary is given of some results and perspectives of the hamiltonian ADM approach to 2 + 1 dimensional gravity. After recalling the classical results for closed universes in the absence of matter, we go over the the case in which matter is present in the form of point spinless particles. Here the maximally slicing gauge proves most effective by relating 2 + 1 dimensional gravity to the Riemann-Hilbert problem. It is possible to solve the gravitational field in terms of the particle degrees of freedom thus reaching a reduced dynamics which involves only the particle positions and momenta. Such a dynamics is proven to be hamiltonian and the hamiltonian is given by the boundary term in the gravitational action. As an illustration, the two body hamiltonian is used to provide the canonical quantization of the two particle system.

Keywords

Body Problem Conformal Factor Hamiltonian Structure Canonical Quantization Hamiltonian Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Staruszkiewicz, A. (1963): Acta Phys. Polonica 24, 734MathSciNetGoogle Scholar
  2. 1a.
    Deser, S., Jackiw, R., ’t Hooft, G. (1984): Ann. Phys. (NY) 152, 220Google Scholar
  3. 1b.
    Deser, S., Jackiw, R. (1984): Ann. Phys. 153, 405Google Scholar
  4. 2.
    Arnowitt, R., Deser, S., Misner, C.W. (1962): The dynamics of general relativity, in Gravitation: An introduction to current research, ed. by L. Witten, John Wiley & Sons, New York, London, pp. 227–265Google Scholar
  5. 3.
    Moncrief, V. (1989): J. Math. Phys. 30, 2907MathSciNetADSMATHCrossRefGoogle Scholar
  6. 4.
    Hosoya, A., Nakao, K. (1990): Class. Quantum Grav. 7, 163MathSciNetADSMATHCrossRefGoogle Scholar
  7. 5.
    Hosoya, A., Nakao, K. (1990): Progr. Theor. Phys. 84, 739MathSciNetADSMATHCrossRefGoogle Scholar
  8. 6.
    Carlip, S. (1990): Phys. Rev. D 42, 2647; (1992): Phys. Rev. D 45, 3584MathSciNetADSCrossRefGoogle Scholar
  9. 7.
    Maass, H. (1964): Lectures on modular functions of one complex variable. Tata Institute, BombayMATHGoogle Scholar
  10. 8.
    Fay, J.D. (1977): J. Reine Angew. Math. 293, 143MathSciNetGoogle Scholar
  11. 9.
    Terras, A. (1985): Harmonic analysis on symmetric spaces and applications. Springer-Verlag, Berlin Heidelberg New YorkMATHCrossRefGoogle Scholar
  12. 10.
    Puzio, R. (1994): Classical and Quantum Gravity 11, 609MathSciNetADSMATHCrossRefGoogle Scholar
  13. 11.
    Hawking, S.W., Hunter, C.J. (1996): Class. Quantum Grav. 13, 2735; Hayward, G. (1993): Phys. Rev. D 47, 3275MathSciNetADSMATHCrossRefGoogle Scholar
  14. 12.
    Brown, J.D., Lau, S.R., York, J.W: gr-qc/ 0010024Google Scholar
  15. 13.
    Wald, R.M. (1984): General relativity. The University of Chicago Press, Chicago and LondonMATHCrossRefGoogle Scholar
  16. 14.
    Bellini, A., Ciafaloni, M., Valtancoli, P. (1995): Physics Lett. B 357, 532; (1996): Nucl. Phys. B 462, 453MathSciNetADSCrossRefGoogle Scholar
  17. 15.
    Welling, M. (1996): Class. Quantum Grav. 13, 653; (1998): Nucl. Phys. B 515, 436MathSciNetADSMATHCrossRefGoogle Scholar
  18. 16.
    Menotti, P., Seminara, D. (2000): Ann. Phys. 279, 282MathSciNetADSMATHCrossRefGoogle Scholar
  19. 17.
    Menotti, P., Seminara, D. (2000): Nucl. Phys. [Proc. Suppl.] 88, 132MathSciNetADSCrossRefGoogle Scholar
  20. 18.
    Cantini, L., Menotti, P., Seminara, D. (2001): Classical and quantum gravity, 18, 2253–2275MathSciNetADSMATHCrossRefGoogle Scholar
  21. 19.
    Liouville, J. (1853): J. Math. Pures Appl. 18, 71; Poincaré, H. (1898): J. Math. Pures Appl. 5, ser.2, 157; Ginsparg, P., Moore, G.: hep-th/9304011; Takhtajan, L. (1994): Topics in quantum geometry of Riemann surfaces: Two dimensional quantum gravity, in Quantum groups and their applications in physics: Proceedings of the International School of Physics “Enrico Fermi”, Course 127, Varenna on Lake Como, Villa Monastero 28 June-8 July 1994, ed. by L. Castellani, J. Wess, pp. 541-579; hep-th/9409088; Kra, I. (1972): Automorphic forms and Kleinian groups. Benjamin, Reading, MAGoogle Scholar
  22. 20.
    Deser, S. (1985): Class. Quantum Grav. 2 489MathSciNetADSCrossRefGoogle Scholar
  23. 21.
    Bolibrukh, A.A. (1990): Uspekhi Mat. Nauk 45, 2, 3MathSciNetGoogle Scholar
  24. 22.
    Henneaux, M. (1984): Phys. Rev. D 29, 2767MathSciNetADSCrossRefGoogle Scholar
  25. 23.
    Ashtekar, A., Varadarajan, M. (1994): Phys. Rev. D 50, 4944MathSciNetADSCrossRefGoogle Scholar
  26. 24.
    ’t Hooft, G. (1988): Commun. Math. Phys. 117, 685MathSciNetADSMATHCrossRefGoogle Scholar
  27. 25.
    Yoshida, M. (1987): Fuchsian differential equations. Fried. Vieweg & Sohn, BraunschweigGoogle Scholar
  28. 26.
    Okamoto, K. (1986): J. Fac. Sci. Tokio Univ. 33 Google Scholar
  29. 27.
    Zograf, P.G., Tahktajan, L.A. (1988): Math. USSR Sbornik 60, 143MATHCrossRefGoogle Scholar
  30. 28.
    Takhtajan, L.A. (1996): Mod. Phys. Lett. A 11 93MathSciNetADSMATHCrossRefGoogle Scholar
  31. 29.
    ’t Hooft, G. (1992): Class. Quantum Grav. 9, 1335; (1993): Class. Quantum Grav. 10, 1023; (1993): Class. Quantum Grav. 10, 1653; (1996): Class. Quantum Grav. 13, 1023MathSciNetADSMATHCrossRefGoogle Scholar
  32. 30.
    Waelbroeck, H. (1990): Class. Quantum Grav. 7, 751; (1994): Phys. Rev. D 50, 4982MathSciNetADSMATHCrossRefGoogle Scholar
  33. 31.
    Nelson, J., Regge, T. (1991): Phys. Lett. B 273, 213MathSciNetADSGoogle Scholar
  34. 32.
    Welling, M. (1997): Class. Quant. Grav. 14, 3313; Matschull, H.-J. and Welling, M. (1998): Class. Quantum Grav. 15, 2981MathSciNetADSMATHCrossRefGoogle Scholar
  35. 33.
    Bourdeau, M., Sorkin, S.D. (1992): Phys. Rev. D 45, 687MathSciNetADSCrossRefGoogle Scholar
  36. 34.
    Deser, S., Jackiw, R. (1988): Commun. Math. Phys. 118, 495MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2002

Authors and Affiliations

  1. 1.Dipartimento di Fisica dell’Universitá, and INFN Sezione di PisaPisaItaly

Personalised recommendations