Skip to main content

Intraoperative Spinal Cord Monitoring: Evoked Potentials and Cerebrospinal Fluid Oxygenation

  • Conference paper
Anaesthesia, Pain, Intensive Care and Emergency Medicine — A.P.I.C.E.
  • 215 Accesses

Abstract

Surgical procedures that involve occlusion of the spinal cord feeding arteries, application of corrective forces to the spine, invasion of the cord, or local osteotomy carry the risk of iatrogenic spinal cord injury. Current reports indicate that the incidence of paraplegia after aortic surgery ranges between less than 0.1% after repair of aortic coarctation and 15% after resection of thoracoabdominal aneurysms [13]. The incidence of neurological deficits after correction of kyphosis and congenital scoliosis varies between 1% and 2% [4]. Definite numbers of spinal cord injury after spinal neurosurgery are lacking, although an increasing use of spinal cord monitoring is reported in these procedures [5, 6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schepens MA, Vermeulen FE, Morshuis WJ, et al (1999) Impact of left heart bypass on the results of thoracoabdominal aortic aneurysm repair. Ann Thorac Surg 67: 1963–1967

    Article  PubMed  CAS  Google Scholar 

  2. Martin GH, O’Hara PJ, Hertzer NR, et al (2000) Surgical repair of aneurysms involving the suprarenal, visceral, and lower thoracic aortic segments: early results and late outcome. J Vasc Surg 31: 851–862

    Article  PubMed  CAS  Google Scholar 

  3. Svensson LG, Crawford ES, Hess KR, et al (1993) Experience with 1509 patients undergoing thoracoabdominal aortic operations. J Vasc Surg 17: 357–368

    Article  PubMed  CAS  Google Scholar 

  4. Dawson EG, Sherman JE, Kanim LE, Nuwer MR (1991) Spinal cord monitoring. Results of the Scoliosis Research Society and the European Spinal Deformity Society survey. Spine 16: S361–S364

    Article  PubMed  CAS  Google Scholar 

  5. Sala F, Niimi Y, Krzan MJ, et al (1999) Embolization of a spinal arteriovenous malformation: correlation between motor evoked potentials and angiographie findings: technical case report. Neurosurgery 45: 932–937

    Article  PubMed  CAS  Google Scholar 

  6. Deutsch H, Arginteanu M, Manhart K, et al (2000) Somatosensory evoked potential monitoring in anterior thoracic vertebrectomy. J Neurosurg 92: 155–161

    PubMed  CAS  Google Scholar 

  7. York DH, Chabot RJ, Gaines RW (1987) Response variability of somatosensory evoked potentials during scoliosis surgery. Spine 12: 864–876

    Article  PubMed  CAS  Google Scholar 

  8. de Haan P, Kalkman CJ, de Mol BA, et al (1997) Efficacy of transcranial motor-evoked myogenic potentials to detect spinal cord ischemia during operations for thoracoabdominal aneurysms. J Thorac Cardiovasc Surg 113: 87–100

    Article  PubMed  CAS  Google Scholar 

  9. Kalkman CJ, Drummond JC, Ribberink AA (1991) Low concentrations of isoflurane abolish motor evoked responses to transcranial electrical stimulation during nitrous oxide/opioid anesthesia in humans. Anesth Analg 73: 410–415

    Article  PubMed  CAS  Google Scholar 

  10. King BS, Rampil IJ (1994) Anesthetic depression of spinal motor neurons may contribute to lack of movement in response to noxious stimuli. Anesthesiology 81: 1484–1492

    Article  PubMed  CAS  Google Scholar 

  11. Maas AI, Fleckenstein W, de Jong DA, van Santbrink H (1993) Monitoring cerebral oxygenation: experimental studies and preliminary clinical results of continuous monitoring of cerebrospinal fluid and brain tissue oxygen tension. Acta Neurochir (Wien) [Suppl] 59: 50–57

    CAS  Google Scholar 

  12. Valadka AB, Gopinath SP, Contant CF, et al (1998) Relationship of brain tissue PO2 to outcome after severe head injury. Crit Care Med 26: 1576–1581

    Article  PubMed  CAS  Google Scholar 

  13. Ishizaki M, Sugiyama S, Uchida H, et al (1997) Intrathecal oxygen concentration as a new indicator of spinal cord ischemia. Acta Med Okayama 51: 71–77

    PubMed  CAS  Google Scholar 

  14. Hellberg A, Ulus AT, Christiansson L, et al (2001) Monitoring of intrathecal oxygen tension during experimental aortic occlusion predicts ultrastructural changes in the spinal cord. J Thorac Cardiovasc Surg 121: 316–323

    Article  PubMed  CAS  Google Scholar 

  15. Christiansson L, Karacagil S, Thelin S, Bergqvist D (1998) Continuous monitoring of intrathecal pO2, pCO2 and pH during surgical replacement of type 11 thoracoabdominal aortic aneurysm. Eur J Vasc Endovasc Surg 15: 78–81

    Article  PubMed  CAS  Google Scholar 

  16. Meyer PR Jr, Cotler HB, Gireesan GT (1988) Operative neurological complications resulting from thoracic and lumbar spine internal fixation. Clin Orthop: 125–131

    Google Scholar 

  17. Nuwer MR, Dawson EG, Carlson LG, et al (1995) Somatosensory evoked potential spinal cord monitoring reduces neurologic deficits after scoliosis surgery: results of a large multicenter survey. Electroencephalogr Clin Neurophysiol 96: 6–11

    Article  PubMed  CAS  Google Scholar 

  18. Cunningham JN Jr, Laschinger JC, Spencer FC (1987) Monitoring of somatosensory evoked potentials during surgical procedures on the thoracoabdominal aorta. IV. Clinical observations and results. J Thorac Cardiovasc Surg 94: 275–285

    PubMed  Google Scholar 

  19. Kobrine AI, Evans DE, Rizzoli HV (1980) Effects of progressive hypoxia on long tract neural conduction in the spinal cord. Neurosurgery 7: 369–375

    Article  PubMed  CAS  Google Scholar 

  20. Lesser RP, Raudzens P, Luders H, et al (1986) Postoperative neurological deficits may occur despite unchanged intraoperative somatosensory evoked potentials. Ann Neurol 19: 22–25

    Article  PubMed  CAS  Google Scholar 

  21. Ben-David B, Haller G, Taylor P (1987) Anterior spinal fusion complicated by paraplegia. A case report of a false-negative somatosensory-evoked potential. Spine 12: 536–539

    Article  PubMed  CAS  Google Scholar 

  22. de Haan P, Kalkman CJ, Meylaerts SA et al (1999) Development of spinal cord ischemia after clamping of noncritical segmental arteries in the pig. Ann Thorac Surg 68: 1278–1284

    Article  PubMed  CAS  Google Scholar 

  23. Jacobs M, Meylaerts SA, de Haan P, et al (1999) Strategies to prevent neurologic deficit based on motor-evoked potentials in type I and II thoracoabdominal aortic aneurysm repair. J Vasc Surg 29: 48–57

    Article  PubMed  CAS  Google Scholar 

  24. Reuter DG, Tacker WA Jr, Badylak SF, et al (1992) Correlation of motor-evoked potential response to ischemic spinal cord damage. J Thorac Cardiovasc Surg 104: 262–272

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Italia

About this paper

Cite this paper

Lips, J., Kalkman, C.J. (2002). Intraoperative Spinal Cord Monitoring: Evoked Potentials and Cerebrospinal Fluid Oxygenation. In: Gullo, A. (eds) Anaesthesia, Pain, Intensive Care and Emergency Medicine — A.P.I.C.E.. Springer, Milano. https://doi.org/10.1007/978-88-470-2099-3_72

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2099-3_72

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0176-3

  • Online ISBN: 978-88-470-2099-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics