Advertisement

Total Intravenous Anesthesia

  • R. Alexander
  • N. G. Volpe
Conference paper

Abstract

The introduction of propofol in the 1980s led to resurgence in the development of total intravenous anesthesia (TIVA) since the loss of clinical interest due to the morbidity associated with the use of althesin and etomidate. Propofol has fewer side effects and a better pharmacokinetic profile for use in TIVA [1, 2]. Earlier recovery, compared with traditional anesthetic techniques, following its use has also been demonstrated, particularly in surgery of short to intermediate duration [3, 4].

Keywords

Minimum Alveolar Concentration Inhalation Anesthesia Target Control Infusion Effector Site Concentration Constant Rate Intravenous Infusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gepts E, Camu F, Cockshott ID, Douglas EJ (1987) Disposition of propofol administered as constant rate intravenous infusions in humans. Anesth Analg 66: 1256–1263PubMedCrossRefGoogle Scholar
  2. 2.
    Cockshott ID, Douglas EJ, Prys-Roberts C, et al (1990) The pharmacokinetics of propofol during and after intravenous infusion in man. Eur J Anaesthesiol 7: 265–275Google Scholar
  3. 3.
    Doze VA, Shafer A, White PF (1988) Propofol-nitrous oxide versus thiopental-isoflurane-nitrous oxide for general anaesthesia. Anesthesiology 69: 63–71PubMedCrossRefGoogle Scholar
  4. 4.
    Millar JM, Jewkes CF (1988) Recovery and morbidity after day case anaesthesia. A comparison of propofol with thiopentone-enflurane with and without alfentanil. Anaesthesia 43: 738–743PubMedCrossRefGoogle Scholar
  5. 5.
    Russell D, Wilkes MP, Hunter SC, et al (1995) Manual compared with target controlled infusion of propofol. Br J Anaesth 75: 562–566PubMedCrossRefGoogle Scholar
  6. 6.
    White PF (1988) Propofol pharmacokinetics and pharmacodynamics. Semin Anesthesia 7: 4–20Google Scholar
  7. 7.
    Kanto J, Gepts E (1989) Pharmacokinetic implications for the clinical use of propofol. Clin Pharmacokinet 17: 308–326PubMedCrossRefGoogle Scholar
  8. 8.
    Hughes MA, Glass PS, Jacobs JR (1992) Context-sensitive half-time in multicompartment pharmacokinetic models for intravenous anesthetic drugs. Anesthesiology 76: 334–341PubMedCrossRefGoogle Scholar
  9. 9.
    Smith I, Thwaites AJ (1998) Double-blind comparison of “single-agent” ambulatory anesthetics: TCI propofol versus sevoflurane (abstract). Anesthesiology 89[Suppl]:A17CrossRefGoogle Scholar
  10. 10.
    El Kettani C, Watremez C, Godet G, et al (2000) Anaesthesia with sevoflurane or TCI for propofol in vascular patients: comparison on quality of induction, quality of recovery and cost (abstract). Eur J Anaesthesiol 17: A310CrossRefGoogle Scholar
  11. 11.
    Hoerauf KH, Wiesner G, Schroegendorfer KF, et al (1999) Waste anaesthetic gases induce sister chromatid exchanges in lymphocytes of operating room personnel.Br J Anaesth 82: 764–766CrossRefGoogle Scholar
  12. 12.
    Schmidt CC, Suttner SW, Piper SN, et al (1999) Comparison of the effects of desflurane and isoflurane anaesthesia on hepatocellular function assessed by alpha glutathione S-transferase. Anaesthesia 54: 1207–1211PubMedCrossRefGoogle Scholar
  13. 13.
    Shichinohe Y, Masuda Y, Takahashi H, et al (1992) A case of postoperative hepatic injury after sevoflurane anesthesia. Masui 41: 1802–1805PubMedGoogle Scholar
  14. 14.
    Smith I, Ding Y, White PF (1992) Comparison of induction, maintenance, and recovery characteristics of sevoflurane-N2O and propofol-sevoflurane-N2O with propofol-isoflurane-N2O anesthesia. Anesth Analg 74: 253–259PubMedCrossRefGoogle Scholar
  15. 15.
    Murray JM, Trinick TR (1992) Plasma fluoride concentrations during and after prolonged anesthesia: a comparison of halothane and isoflurane. Anesth Analg 74: 236–240PubMedCrossRefGoogle Scholar
  16. 16.
    Murray JM, Trinick TR (1992) Hepatic function and indocyanine green clearance during and after prolonged anaesthesia with propofol. Br J Anaesth 69: 643–644PubMedCrossRefGoogle Scholar
  17. 17.
    Pollock AN, McKenzie AJ, Hodges M, Snoeck MM. (1997) Propofol and malignant hyperthermia susceptibility. Anaesth Intensive Care 25: 583–585PubMedGoogle Scholar
  18. 18.
    Kenny GNC (1999) Target-controlled anaesthesia: concepts and first clinical experiences. Eur J Anaesthes 14[Suppl]:29–31Google Scholar
  19. 19.
    Servin FS (1998) TCI with compared manually controlled infusion of propofol: a multicentre study. Anaesthesia 53[Suppl 1]: 82–86PubMedCrossRefGoogle Scholar
  20. 20.
    Hunt-Smith J, Donaghy A, Leslie K, et al (1999) Safety and efficacy of target controlled infusion (“Diprifusor”) vs manually controlled infusion of propofol for anaesthesia. Anaesth Intensive Care 27: 260–264PubMedGoogle Scholar
  21. 21.
    Breslin D, Reid J, Kyle A, Mirakhur RK (2001) Manual versus target-controlled infusions of propofol; propofol dosage and BIS scores. Br J Anaesth 86: 305–306Google Scholar
  22. 22.
    Vuyk J (1997) Pharmacokinetic and pharmacodynamic interactions between opioids and propofol. J Clin Anesth 9: 23S–26SPubMedCrossRefGoogle Scholar
  23. 23.
    Vuyk J, Engbers FH, Burm AG, et al (1996) Pharmacodynamic interaction between propofol and alfentanil when given for induction of anesthesia. Anesthesiology 84: 288–299PubMedCrossRefGoogle Scholar
  24. 24.
    Glass PS, Hardman D, Kamiyama Y (1993) Preliminary pharmacokinetics and pharmacodynamics of an ultra-short-acting opioid: remifentanil (G187084B). Anesthes Analg 77: 1031–1040CrossRefGoogle Scholar
  25. 25.
    Egan TD, Lemmens JM, Fiset P, et al (1993) The pharmacokinetics of the new short-acting opiod remifentanil (GI87084B) in healthy adult male volunteers. Anesthesiology 79: 881–892PubMedCrossRefGoogle Scholar
  26. 26.
    Minto CF, Schnider TW, Shafer SL (1997) Pharmacokinetics and pharmacodynamics of remifentanil. II. Model application. Anesthesiology 86: 24–33PubMedCrossRefGoogle Scholar
  27. 27.
    Epple J, Kubitz J, Schmidt H, et al (2001) Comparative analysis of costs of total intravenous anaesthesia with propofol and remifentanil vs. balanced anaesthesia with isoflurane and fentanyl. Eur J Anaesthesiol 18: 20–28PubMedGoogle Scholar
  28. 28.
    Larsen B, Scitz A, Larsen R (2000) Recovery of cognitive function after remifentanil-propofol anesthesia: a comparison with desflurane and sevoflurane anesthesia. Anesthes Analg 90: 168–174CrossRefGoogle Scholar
  29. 29.
    Grundmann U, Silomon M, Bach F, et al (2001) Recovery profile and side effects of remifentanil-based anaesthesia with desflurane or propofol for laporoscopy cholecystectomy. Acta Anaesthesiol Scand 45: 320–326PubMedCrossRefGoogle Scholar
  30. 30.
    Watson KR, Shah MV (2000) Clinical comparison of’ single agent’ anaesthesia with sevoflurane versus target controlled infusion of propofol. Br J Anaesth 85: 541–546PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2002

Authors and Affiliations

  • R. Alexander
    • 1
  • N. G. Volpe
    • 1
  1. 1.Department of Anaesthesia and Intensive CareWorcester Acute Hospitals NHS Trust, The Worcester Royal InfirmaryWorcesterUK

Personalised recommendations