Skip to main content
  • 218 Accesses

Abstract

Sudden cardiac death accounts for 300,000 to 400,000 deaths annually in the United States, it is the most common and often first manifestation of coronary heart disease and is responsible for approximately 50% of mortality for cardiovascular diseases in the United States and other developed countries [12]. Sudden cardiac death describes the unexpected natural death from a cardiac cause within a short period, generally ≤ 1 hour from onset of symptoms, in a person without any prior condition that would appear fatal [1]. Cardiopulmonary resuscitation (CPR) effectively restores haemodynamic stability and return to spontaneous circulation (ROSC) in 40% to 60% of arrests. Prolonged survival is significantly lower because of an underlying illness and postresuscitation syndrome, specifically central nervous system injury and left ventricular stunning after resuscitation [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zipes DP, Wellens HJJ (1998) Sudden cardiac death. Circulation 98:2334–2351

    Article  PubMed  CAS  Google Scholar 

  2. American Heart Association (1991) Heart and Stroke Facts. Dallas: American Heart Association

    Google Scholar 

  3. Thel MC, O’Connor CM, Durham ( 1999) Cardiopulmonary resuscitation: Historical prespective to recent investigations. Am Heart J 137:39–48

    Article  PubMed  CAS  Google Scholar 

  4. Liberthson RR, Nagel EL, Hirschman JC (1974) Prehospital ventricular fibrillation. Prognosis and follow-up course. N Engl J Med 291:317–321

    Article  PubMed  CAS  Google Scholar 

  5. Brain Resuscitation Clinical Trial II Study Group (1991) A randomized clinical study of a calcium-entry blocker (lidoflazine) in the treatment of comatose survivors of cardiac arrest. N Engl J Med 324:1125–1231

    Google Scholar 

  6. Becker LB, Ostrander MP, Barrett J et al (1991) CPR Chicago: outcome of cardiopulmonary resuscitation in a large metropolitan area-where are the survivors? Ann Emerg Med 20:355–361

    Article  PubMed  CAS  Google Scholar 

  7. Brown CG, Martin DR, Pepe PE (1992) A comparison of standard-dose and high-dose epinephrine in cardiac arrest outside the hospital. N Engl J Med 327:1051–1055

    Article  PubMed  CAS  Google Scholar 

  8. Stiell IG, Herbert PC, Weitzman BN (1992) High-dose epinephrine in adult cardiac arres.t N Engl J Med 327:1045–1050

    Article  CAS  Google Scholar 

  9. Lombardi G, Gallagher J, Gennis P (1994) Outcome of out-of-hospital cardiac arrest in New York city: the Pre-hospital Arrest Survival Evaluation (PHASE) study. JAMA 271:678–683

    Article  PubMed  CAS  Google Scholar 

  10. Tang W, Weil MH, Sun S et al (1993) Progressive myocardial dysfunction after cardiac resuscitation. Crit Care Med 21:1046–1050

    Article  PubMed  CAS  Google Scholar 

  11. Gazmuri RJ, Weil MH, Bisera J et al (1996) Myocardial dysfunction after successful resuscitation from cardiac arrest. Crit Care Med 24:992–1000

    Article  PubMed  CAS  Google Scholar 

  12. Brain Resuscitation Clinical Trial I Study Group (1986) A randomized clinical study of thiopental loading in comatose survivors of cardiac arrest. N Engl J Med 314:397–403

    Article  Google Scholar 

  13. Gray WA, Capone RJ, Most AS (1991) Unsuccessful emergency medical resuscitation-are continued efforts in the emergency department justified? N Engl J Med 325:1393–1398

    Article  PubMed  CAS  Google Scholar 

  14. Tang Z, Weil MH, Sun S et al (1997) High energy countershocks increase ventricular ectopy after successful CPR [abstract]. Crit Care Med 25:A57

    Google Scholar 

  15. Tang W, Weil MH, Sun S et al (1995) Epinephrine increases the severity of post-resuscitation myocardial dysfunction. Circulation 92:3089–3093

    Article  PubMed  CAS  Google Scholar 

  16. Sun SJ, Weil MH, Tang W et al (1996) Effects of buffer agents on post-resuscitation myocardial dysfunction. Crit Care Med 24:2035–2041

    Article  PubMed  CAS  Google Scholar 

  17. Xie J, Weil MH, Sun SJ et al (1997) High power defibrillation increases the severity of post-resuscitation myocardial dysfunction. Circulation 96:683–688

    Article  PubMed  CAS  Google Scholar 

  18. De Antonio HJ, Kaul S, Lerman BB (1990) Reversible myocardial depression survivors of cardiac arrest. Pacing Clin Electrophysiol 13:982–985

    Article  Google Scholar 

  19. Lewes SJ, Holmberg S, Quinn E (1993) Out-of-hospital resuscitation in EastSussex: 1981-1989. Br Heart J 70:568–573

    Article  Google Scholar 

  20. United States Statistical Abstract 116th Edition, 1994

    Google Scholar 

  21. Steenbergen C, Murphy E, Watts JA et al (1990) Correlation between cytosolic free calcium, contracture, ATP, and irreversible ischemic injury in perfused rat heart. Circ Res 66:135–146

    Article  PubMed  CAS  Google Scholar 

  22. Murry CE, Richard VJ, Jennings RB et al (1991) Myocardial protection is lost before contractile function recovers from preconditioning. Am J Physiol 260:H796-H804

    Google Scholar 

  23. Johnson BA, Weil MH, Tang W et al (1995) Mechanisms of myocardial acidosis during arrest J Appl Physiol 78:1579–1584

    PubMed  CAS  Google Scholar 

  24. Hoffmeister HM, Mauser M, Schaper W (1985) Effects of adenosine and AICAR on ATP content and regional contractile function in reperfused canine myocardium. Basic Res Cardiol 80:445–458

    Article  PubMed  CAS  Google Scholar 

  25. Kusuoka H, Porterfield JK, Weisman HF et al (1987) Pathophysiology and pathogenesis of stunned myocardium: depressed Ca2+ activation overload in ferret hearts. J Clin Invest 79:950–961

    Article  PubMed  CAS  Google Scholar 

  26. Schafer S, Heusch G (1990) Recruitment of a time-dependent inotropic reserve by postextrasystolic potentiation in normal and reperfused myocardium. Basic Res Cardiol 85:257–269

    Article  PubMed  CAS  Google Scholar 

  27. Kida M, Fujiwara H, Uegaito T et al (1993) Dobutamine prevents both myocardial stunning and phosphocreatine overshoot without affecting ATP level. J Mol Cell Cardiol 25:875–8135

    Article  PubMed  CAS  Google Scholar 

  28. Marban E (1991) Myocardial stunning and hibernation. The physiology behind the colloquialisms. Circulation 83:681–688

    Article  PubMed  CAS  Google Scholar 

  29. Li XY, McCay PB, Zughaib M et al (1993) Demonstration of free radical generation in the “stunned” myocardial in the conscious dog and identification of major differences between conscious and open-chest dogs. J Clin Invest 92:1025–1041

    Article  PubMed  CAS  Google Scholar 

  30. Ehring T, Bohm M, Heusch G (1992) The calcium antagonist shows the functional recovery of reperfused myocardium only when given before ischemia. J Cardiovasc Pharmacol 20:63–74

    PubMed  CAS  Google Scholar 

  31. Du Toit EF, Opie LH (1992) Modulation of severity of reperfusion stunning in the isolated rat heart by agents altering calcium flux at the onset of reperfusion. Circ Res 70:960–967

    Article  Google Scholar 

  32. Ehring T, Heusch G (1995) Stunned myocardium and the attenuation of stunning by calcium antagonists. Am J Cardiol 75:61E–67E

    Article  PubMed  CAS  Google Scholar 

  33. Schwartz A (1992) Molecular and cellular aspects of calcium channel antagonism. Am J Cardiol 70(suppl):6F–8F

    Article  PubMed  CAS  Google Scholar 

  34. Ferrari R, Visioli O (1994) How do calcium antagonists differ in clinical practice? Cardiovasc Drug Ther 8:565–575

    Article  Google Scholar 

  35. Tanskela JS, Shoubridge EA (1996) Intercellular calcium dynamics and cellular energetics in ischemic cells studied by concurrent and doublequantum filtered spectroscopy. J Neurochem 66:266–276

    Article  Google Scholar 

  36. Reimer KA, Murry CE, Yamasawa I et al (1986) Four brief periods of ischemia cause no cumulative ATP loss or necrosis. Am J Physiol 251:H1306-H1305

    Google Scholar 

  37. Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136

    Article  PubMed  CAS  Google Scholar 

  38. Schott RJ, Rohmann S, Braun ER et al(1990) Ischemic preconditioning reduces infarct size in swine myocardium. Circ Res 66:1133–1142

    Article  PubMed  CAS  Google Scholar 

  39. Iwamoto T, Miura T, Adachi T et al (1991) Myocardial infarct size-limiting effect if ischemic preconditioning was not attenuated by oxygen free-radical scavengers in the rabbit. Circulation 83:1015–1022

    Article  PubMed  CAS  Google Scholar 

  40. Yellon DM, Alkhulaifi AM, Browne EE et al (1992) Ischemic preconditioning limits infarct size in the rat heart. Cardiovasc Res 26:983–987

    Article  PubMed  CAS  Google Scholar 

  41. Menasche P, Kevelaitis E, Mouuas C et al (1995) Preconditioning with potassium channel openers: a new concept for enhancing cardioplegic protection? J Thorac Cardiovasc Surg 110:1606–1614

    Article  PubMed  CAS  Google Scholar 

  42. Takeda S, Satoh T, Osada M et al (1995) Protective effect of pacing on reperfusion-induced ventricular arrhythmias in isolated rat hearts. Can J Cardiol 11:573–579

    PubMed  CAS  Google Scholar 

  43. Shiki K, Hearse DJ (1987) Preconditioning of ischemic myocardium: reperfusion-induced arrhythmias. Am J Physiol 253:H1470-H1476

    Google Scholar 

  44. Cohen MV, Liu GS, Downey JM (1991) Preconditioning causes improved wall motion as well as smaller infarcts after transient coronary occlusion in rabbits. Circulation 84:341–349

    Article  PubMed  CAS  Google Scholar 

  45. Sun JZ, Tang XL, Park SW et al (1996) Evidence for an essential role of reactive oxygen species in the genesis of late preconditioning against myocardial stunning in conscious pigs. J Clin Invest 97:562–576

    Article  PubMed  CAS  Google Scholar 

  46. Xu C, Chen Y, Lu M (1995) A clinical study on limitation of infarct size ischemic preconditioning in 100 cases of acute myocardial infraction. Chung Hua Nei Ko Tsa Chih 34:16–18

    PubMed  CAS  Google Scholar 

  47. Pasceri V, Lanza GA, Parti G (1996) Preconditioning by transient myocardial ischemia confers protection against ischemia-induced ventricular arrhythmias in variant angina. Circulation 94:1850–1856

    Article  PubMed  CAS  Google Scholar 

  48. Mei DA, Gross GJ (1995) Evidence for the involvement of the ATP-sensitive potassium channel in a novel model of hypoxic preconditioning in dogs. Cardiovasc Res 30:222–230

    PubMed  CAS  Google Scholar 

  49. Koning MM, Gho BC, van Klaarwater E et al (1996) Rapid ventricular pacing produces myocardial protection by nonischemic activation of KATP channels. Circulation 93:178–186

    Article  PubMed  CAS  Google Scholar 

  50. Murphy E, Penman M, London RE et al (1991) Amiloride delays the ischemic-induced rise in cytosolic free calcium. Circ Res 68:1250–1258

    Article  PubMed  CAS  Google Scholar 

  51. Van Winkle DM, Thornton RB, Downey JM (1991) Cardioprotection from ischemic preconditioning is lost following prolonged reperfusion in the rabbit. Coron Artery Dis 2:613–619

    Google Scholar 

  52. Li YW, Whittaker P, Kloner RA (1992) The transient nature of the effect of ischemic preconditioning on myocardial infarct size and ventricular arrhythmia. Am Heart J 123:346–353

    Article  PubMed  CAS  Google Scholar 

  53. Simkhovich BA, Whittaker P, Przyklenk K et al (1995) Transient preischemic acidosis protects the isolated rabbit heart subject to 30 minutes, but not 60 minutes, of global ischemia. Basic Res Cardiol 90:397–403

    Article  PubMed  CAS  Google Scholar 

  54. Liu GS, Thornton J, Van Win et al (1991) Protection against infarction afforded by preconditioning is mediated by Al, adenosine receptors in the rabbit heart. Circulation 84:350–356

    Article  PubMed  CAS  Google Scholar 

  55. Thornton JD, Liu GS, Downey JM (1993) Pretreatment with pertussis toxin blocks the protective effects of preconditioning: evidence for a Gprotein mechanism. J Mol Cell Cardiol 25:311–320

    Article  PubMed  CAS  Google Scholar 

  56. Gross GJ, Auchampach JA (1992) Blockade of ATP-sensitive potassium channels prevents myocardial preconditioning in dogs. Circ Res 70:223–233

    Article  PubMed  CAS  Google Scholar 

  57. Auchampach JA, Grover GJ, Gross GJ (1992) Blockade of ischemic preconditioning in dogs by the novel ATP dependent potassium channel antagonist sodium 5-hydroxydecanoate. Cardiovasc Res 26:1054–1062

    Article  PubMed  CAS  Google Scholar 

  58. Behling RW, Malone HJ (1995) KATP-channel openers protect against increased cytosolic calcium during ischemia and reperfusion. J Mol Cell Cardiol 27:1809–1817

    Article  PubMed  CAS  Google Scholar 

  59. Shigematsu S, Sato T, Abe T (1995) Pharmacological evidence for the persistent activation of ATP-sensitive K+ channels in early phase of reperfusion and its protective role against myocardial stunning. Circulation 92:2266–2275

    Article  PubMed  CAS  Google Scholar 

  60. Mizumura T, Nithipatikom K, Gross GJ (1995) Bimakalin, an ATP-sensitive potassium channel opener, mimics the effects of ischemic preconditioning to reduce infarct size, adenosine release, and neutrophil function in dogs. Circulation 92:1236–1245

    Article  PubMed  CAS  Google Scholar 

  61. Lawton JS, Sepic JD, Allen CT et al (1996) Myocardial protection with potassium-channel openers is as effective as St Thomas’ solution in the rabbit heart. Ann Thorac Surg 61:31–38

    Article  Google Scholar 

  62. Cleveland JC, Meldrum DR, Rowland RT et al (1997) Adenosine preconditioning of human myocardium is dependent upon the ATP-sensitive K channel. J Mol Cell Cardiol 29:175–182

    Article  PubMed  CAS  Google Scholar 

  63. Liu Y, Gao WD, O’Rourke B (1996) Synergistic modulation of ATP-sensitive K+ currents by protein kinase C and adenosine. Implications for ischemic preconditioning. Circ Res 78:443–454

    Article  PubMed  CAS  Google Scholar 

  64. Katsuda Y, Egashira K, Ueno H et al (1996) ATP-sensitive K+ channel opener pinacidil augments b1-adrenoceptor-induced coronary vasodilation in dogs. Am J Physiol 270:H2210-H2215

    Google Scholar 

  65. Vegh A, Papp JG, Parratt J (1994) Attenuation of the antiarrhythmic effects of ischemic preconditioning by blockage of bradykinin Bs receptors. Br J Pharmacol 113:1167–1172

    Article  PubMed  CAS  Google Scholar 

  66. Parratt J, Vegh A, Papp JG (1995) Pronounced antiarrhythmic effects of ischemic preconditioning-are there possibilities for pharmacological exploitation? Pharmacol Res 31:225–234

    Article  PubMed  CAS  Google Scholar 

  67. Gross GJ, Mei DA, Schultz JJ (1996) Criteria for a mediator or effector of myocardial preconditioning: do KATP channels meet the requirements? Basic Res Cardiol 91:31–34

    PubMed  CAS  Google Scholar 

  68. Tang W, Weil MH, Sun SJ (1997) KATP channel activation improves post resuscitation myocardial function [abstract]. Circulation 96:1366

    Google Scholar 

  69. Tang W, Weil MH, Sun S et al (2000) K(ATP) channel activation reduces the severity of post resuscitation myocardial dysfunction. Am J Physiol Heart Circ Physiol 279: H1609-H1615

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Italia

About this paper

Cite this paper

Pellis, T., Tang, W. (2002). Myocardial Preservation during Cardiopulmonary Resuscitation. In: Gullo, A. (eds) Anaesthesia, Pain, Intensive Care and Emergency Medicine — A.P.I.C.E.. Springer, Milano. https://doi.org/10.1007/978-88-470-2099-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2099-3_6

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0176-3

  • Online ISBN: 978-88-470-2099-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics