Lactic acidosis is the most-common and most-important metabolic acidosis encountered in the intensive care unit (ICU). The acidemia has physiological significance and, more importantly, serves as a marker for a diverse group of serious underlying conditions. In addition, the presence, magnitude, and course of the acidosis have important prognostic implications.


Acute Lung Injury Lactate Level Lactic Acidosis Respir Crit Adult Respiratory Distress Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Levraut J, Ciebiera JP, Chave S, et al (1998) Mild hyperlactatemia in stable septic patients is due to impaired lactate clearance rather than overproduction. Am J Respir Crit Care Med 157: 1021–1026PubMedGoogle Scholar
  2. 2.
    James JH, Fang CH, Schrantz SJ, et al (1996) Linkage of aerobic glycolysis to sodium-potassium transport in rat skeletal muscle: implications for increased muscle lactate production in sepsis. J Clin Invest 98: 2388–2397PubMedCrossRefGoogle Scholar
  3. 3.
    Agbenyega T, Angus BJ, Bedu-Addo (2000) Glucose and lactate kinetics in children with severe malaria. J Clin Endocrinol Metab 85: 1569–1576PubMedCrossRefGoogle Scholar
  4. 4.
    Luft D, Deichsel G, Schmulling RM, et al (1983) Definition of clinically relevant lactic acidosis in patients with internal diseases. Am J Clin Pathol 80: 484–489PubMedGoogle Scholar
  5. 5.
    Stacpoole PW, Wright EC, Baumgartner TG, et al (1994) Natural history and course of acquired lactic acidosis in adults. Am J Med 97: 47–54PubMedCrossRefGoogle Scholar
  6. 6.
    Bakker J, Gris P, Coffernils M, et al (1996) Serial blood lactate levels can predict the developement of multiple organ failure following septic shock. Am J Surg 171: 221–226PubMedCrossRefGoogle Scholar
  7. 7.
    Ronco JJ, Fenwick Jc, Tweeddale MG, et al (1993) Identification of the critical oxygen delivery for anaerobic metabolism in critically ill septic and nonseptic humans. JAMA 270: 1724–1730PubMedCrossRefGoogle Scholar
  8. 8.
    Mela L, Bacalzo LV Jr, Miller JD (1971) Defective oxidative metabolism of rat liver mitochondria in hemorrhagic and endotoxin shock. Am J Physiol 220: 571–577PubMedGoogle Scholar
  9. 9.
    Takehara Y, Kanno T, Yoshioka T, et al (1995) Oxygen-dependent regulation of mitochondrial energy metabolism by nitric oxide. Arch Biochem Biophys 323: 27–32PubMedCrossRefGoogle Scholar
  10. 10.
    Szabo C, Cuzzocrea S, Zingarelli B, et al (1997) Endothelial dysfunction in a rat model of endotoxic shock: importance of the activation of poly (ADP-ribose) synthetase by peroxynitrite. J Clin Invest 100: 723–735PubMedCrossRefGoogle Scholar
  11. 11.
    Vary TC 1991 Increased pyruvate dehydrogenase kinase activity in response to sepsis. Am J Physiol 260E669–E674.Google Scholar
  12. 12.
    Widnell CC, Baldwin SA, Davies A, et al (1990) Cellular stress induces a redistribution of the glucose transporter. FASEB J 4: 1634–1637PubMedGoogle Scholar
  13. 13.
    Cerra FB, Caprioli J, Siegel JH, et al (1979) Proline metabolism in sepsis, cirrhosis and general surgery: the peripheral energy deficit. Ann Surg 190: 577–586PubMedCrossRefGoogle Scholar
  14. 14.
    Russell JA, Phang PT (1994) The oxygen delivery/consumption controversy: approaches to management of the critically ill. Am J Respir Crit Care Med 149: 533–537PubMedGoogle Scholar
  15. 15.
    Ronco JJ, Phang PT, Walley KR, et al (1991) Oxygen consumption is independent of changes in oxygen delivery in severe adult respiratory distress syndrome. Am Rev Respir Dis 143: 1267–1273PubMedGoogle Scholar
  16. 16.
    Mira JP, Fabre JE, Baigorri F, et al (1994) Lack of oxygen supply dependency in patients with severe sepsis: a study of oxygen delivery increased by military antishock trouser and dobutamine. Chest 106: 1524–1531PubMedCrossRefGoogle Scholar
  17. 17.
    Hayes MA, Yau EH, Timmins AC, et al (1993) Response of critically ill patients to treatment aimed at achieving supranormal oxygen delivery and consumption: relationship to outcome. Chest 103: 886–895PubMedCrossRefGoogle Scholar
  18. 18.
    Boekstegers P, Weidenhöfer S, Kapsner T, et al (1994) Skeletal muscle partial pressure of oxygen in patients with sepsis. Crit Care Med 22: 640–650PubMedCrossRefGoogle Scholar
  19. 19.
    Hurtado FJ, Gutierrez AM, Silva N, et al (1992) Role of tissue hypoxia as the mechanism of lactic acidosis during E coli endotoxemia. J Appl Physiol 72: 1895–1901PubMedGoogle Scholar
  20. 20.
    Hotchkiss RS Long RC Shires GT et al 1989 An in vivo examination of rat brain during sepsis with 31P-NMR spectroscopy. Am J Physiol 257 C1055–C1061Google Scholar
  21. 21.
    Hotchkiss RS Rust RS Dence CS et al 1991 Evaluation of the role of cellular hypoxia in sepsis by the hypoxic marker [18F] fluoromisonidazole. Am J Physiol 261R965–R972Google Scholar
  22. 22.
    Taylor DE, Piantadosi CA (1995) Oxidative metabolism in sepsis and sepsis syndrome. J Crit Care 10: 122–135PubMedCrossRefGoogle Scholar
  23. 23.
    Stacpoole PW, Wright EC, Baumgartner TG, et al (1992) A controlled clinical trial of dichlo-roacetate for treatment of lactic acidosis in adults. N Engl J Med 327: 1564–1569PubMedCrossRefGoogle Scholar
  24. 24.
    Curtis SE, Cain SM (1992) Regional and systemic oxygen/delivery uptake relations and lactate flux in hyperdynamic, endotoxin-treated dogs. Am Rev Respir Dis 145: 348–354PubMedGoogle Scholar
  25. 25.
    Silverman HJ (1991) Lack of a relationship between induced changes in oxygen consumption and changes in lactate levels. Chest 100: 1012–1015PubMedCrossRefGoogle Scholar
  26. 26.
    Vallet B, Lund N, Curtis SE, et al (1994) Gut and muscle tissue PO2 in endotoxemic dogs during shock and resuscitation. J Appl Physiol 76: 793–800PubMedGoogle Scholar
  27. 27.
    Gutierrez G, Bismar H, Dantzker DR, et al (1992) Comparison of gastric intramucosal pH with measures of oxygen transport and consumption in critically ill patients. Crit Care Med 20: 451–457PubMedCrossRefGoogle Scholar
  28. 28.
    Gutierrez G, Clark C, Brown SD, et al (1994) Effect of dobutamine on oxygen consumption and gastric mucosal pH in septic patients. Am J Respir Crit Care Med 150: 324–329PubMedGoogle Scholar
  29. 29.
    Douzinas EE, Tsidemiadou PD, Pitaridis MT, et al (1997) The regional production of cytokines and lactate in sepsis-related multiple organ failure. Am J Respir Crit Care Med 155: 53–59PubMedGoogle Scholar
  30. 30.
    Marik PE, Mohedin M (1994) The contrasting effects of dopamine and norepinephrine on systemic and splanchnic oxygen utilization in hyperdynamic sepsis. JAMA 272: 1354–1357PubMedCrossRefGoogle Scholar
  31. 31.
    Neviere R, Mathieu D, Chagnon JL, et al (1996) The contrasting effects of dobutamine and dopamine on gastric mucosal perfusion in septic patients. Am J Respir Crit Care Med 154: 1684–1688PubMedGoogle Scholar
  32. 32.
    Bellomo R, Kellum JA, Pinsky MR (1996) Transvisceral lactate fluxes during early endotoxemia. Chest 110: 198–204PubMedCrossRefGoogle Scholar
  33. 33.
    Brown SD, Clark C, Gutierrez G (1996) Pulmonary lactate release in patients with sepsis and the adult respiratory distress syndrome. J Crit Care 11: 2–8PubMedCrossRefGoogle Scholar
  34. 34.
    Kellum JA, Kramer DJ, Lee K, et al (1997) Release of lactate by the lung in acute lung injury. Chest 111: 1301–1305PubMedCrossRefGoogle Scholar
  35. 35.
    De Backer D, Creteur J, Zhang H, et al (1997) Lactate production by the lungs in acute lung injury. Am J Respir Crit Care Med 156: 1099–1104Google Scholar
  36. 36.
    Kellum JA, Bellomo R, Kramer DJ, et al (1995) Hepatic anion flux during acute endotoxemia. J Appl Physiol 78: 2212–2217PubMedGoogle Scholar
  37. 37.
    Davies AO (1984) Rapid desensitization and uncoupling of human beta-adrenergic receptors in an in vitro model of lactic acidosis. J Clin Endocrinol Metab 59: 398–405PubMedCrossRefGoogle Scholar
  38. 38.
    Mochizuki S, Kobayashi K, Neely JR (1976) Effects of L-lactate on glyceraldehyde-3-P dehydrogenase in heart muscle. Recent Adv Stud Cardiac Struct Metab 12: 175–182PubMedGoogle Scholar
  39. 39.
    Vincent JL, Dufaye P, Berre J, et al (1983) Serial lactate determinations during circulatory shock. Crit Care Med 11: 449–451PubMedCrossRefGoogle Scholar
  40. 40.
    Orringer CE, Eustace JC, Wunsch CD, et al (1977) Natural history of lactic acidosis after grand-mal seizures: a model for the study of an anion-gap acidosis not associated with hyperkalemia. N Engl J Med 297: 796–799PubMedCrossRefGoogle Scholar
  41. 41.
    Gutknecht J (1990) Salicylates and proton transport through lipid bilayer membranes: a model for salicylate-induced uncoupling and swelling in mitochondria. J Membr Biol 115: 253–260PubMedCrossRefGoogle Scholar
  42. 42.
    Chattha G, Arieff AI, Cummings C, et al (1993) Lactic acidosis complicating the acquired immunodeficiency syndrome. Ann Intern Med 118: 37–39PubMedGoogle Scholar
  43. 43.
    Chariot P, Drogou I, Lacroix-Szmania I de, et al (1999) Zidovudine-induced mitochondrial disorder with massive liver steatosis, myopathy, lactic acidosis, and mitochondrial DNA depletion. J Hepatol 30: 156–160PubMedCrossRefGoogle Scholar
  44. 44.
    Shaer AJ, Rastegar A (2000) Lactic acidosis in the setting of antiretroviral therapy for the acquired immunodeficiency syndrome: a case report and review of the literature. Am J Nephrol 20: 332–338PubMedCrossRefGoogle Scholar
  45. 45.
    Bartley PB, Westacott L, Boots RJ, et al (2001) Large hepatic mitochondrial DNA deletions associated with L-lactic acidosis and highly active antiretroviral therapy. AIDS 15: 419–420PubMedCrossRefGoogle Scholar
  46. 46.
    Schramm C, Wanitschke R, Galle PR (1999) Thiamine for the treatment of nucleoside analogue-induced severe lactic acidosis. Eur J Anaesthesiol 16: 733–735PubMedGoogle Scholar
  47. 47.
    Fouty B, Frerman F, Reves R (1998) Riboflavin to treat nucleoside analogue-induced lactic acidosis. Lancet 352: 291–292PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2002

Authors and Affiliations

  • G. A. Schmidt
    • 1
  1. 1.Department of Clinical Medicine and Anaesthesia/Critical CareUniversity of ChicagoChicagoUSA

Personalised recommendations