Skip to main content

Abstract

Hydrogen ion concentration is one of the most-important regulated aspects of the intracellular environment, since changes in hydrogen ion concentration are associated with alterations in virtually all cell processes. Intracellular pH is typically more acidic than the pH of the extracellular space, and is in the range of 6.8–7.2 [1]. This represents the average pH in the cytoplasm and nucleus, but the pH of intracellular organelles can range from as low as 5.0 in lysosomes to as high as 8.0 in the mitochondria (Fig. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Putnam RW (1998) Intracellular pH regulation. In: Cell physiology source book, Sperelakis. Academic Press, Cincinnati pp 293–311

    Google Scholar 

  2. Orlowski J, Grinstein S (1997) Na+/H+ exchangers of mammalian cells. J Biol Chem 272: 22373–22376

    Article  PubMed  CAS  Google Scholar 

  3. Stewart PA (1981) How to Understand Acid-Base. A Quantitative Acid-Base Primer for Biology and Medicine. Elsevier New York

    Google Scholar 

  4. Magder S (1998) Pathophysiology of metabolic acid-base disturbances in patients with critical illness. In: Ronco C, Bellorno R (eds.) Crit Care Nephrol Kluwer Academic Publishers, Netherlands 279–296

    Chapter  Google Scholar 

  5. Heigenhauser GJF Lindinger MI 1988 Ion fluxes during tetanic stimulation in isolated perfused rat hindlimb. Am J Physiol 245 R117–R126

    Google Scholar 

  6. Kowalchuk JM, Heigenhauser GJF, Lindinger MI (1981) Factors influencing hydrogen ion concentration in muscle after intense exercise. J Appl Physiol. 65: 2080–2089

    Google Scholar 

  7. Lindinger MI (1995) Origins of [H+] changes in exercising skeletal muscle. Can J Appl Physiol 20: 357–368

    Article  PubMed  CAS  Google Scholar 

  8. Prange HD, Shoemaker JLJ, Westen EA, et al (2001) Physiological consequences of oxygendependent chloride binding to hemoglobin. J Appl Physiol 91: 33–38

    PubMed  CAS  Google Scholar 

  9. Hochachka PW, Mommsen TP (1983) Protons and anaerobiosis. Science 219: 1391–1397

    Article  PubMed  CAS  Google Scholar 

  10. Neylon CB, Little PJ, Cragoe EJ Jr, Bobik A (1990) Intracellular pH in human arterial smooth muscle: regulation by Na+/H+ exchange and a novel 5-(n-ethyl-n-isopropyl) amiloride-sensitive Na+—and HCO3-—dependent mechanism. Circ Res 67: 814–825

    Article  PubMed  CAS  Google Scholar 

  11. Rawn JD (1989) Bioenergetics: The significance of the hydrolysis of ATP and other energy-rich metabolites. In: Daisy L, Hodgin KC, O’QuinTL, Olsen S and Swan JA. Burlington: Patterson, pp 265–287

    Google Scholar 

  12. Roos A, Boron WF (1981) Intracellular pH. Physiol Rev 61: 296–434

    PubMed  CAS  Google Scholar 

  13. Russell JM (1976) Role of chloride transport in regulation of intracellular pH. Nature 4: 73–74

    Article  Google Scholar 

  14. Counillon L, Pouysségur J (2000) The expanding family of eucaryotic Na /H exchangers. BiolChem 275: 1–4

    CAS  Google Scholar 

  15. Grinstein S, Cohen S, Rothstein A (1984) Cytoplasmic pH regulation in thymic lymphocytes by an amiloride-sensitive Na+/H+ Antiport. J Gen Physiol 83: 341–369

    Article  PubMed  CAS  Google Scholar 

  16. Moolenaar WH, Boonstra J, Saag PT van der, de Laat SW (1981) Sodium/proton exchange in mouse neuroblastoma cells. J Biol Chem 256: 12883–12887

    PubMed  CAS  Google Scholar 

  17. Boron WF, Russel JM (1983) Stoichiometry and ion dependencies of the intracellular-pH-regulating mechanism in squid giant axons. J Gen Physiol 81: 373–399

    Article  PubMed  CAS  Google Scholar 

  18. Stevens TH, Forgac M (1997) Structure, function and regulation of the vacuolar (H+)-ATPase. Annu Rev Cell Dev Biol 13: 779–808

    Article  PubMed  CAS  Google Scholar 

  19. Stone DK, Xie X-S (1988) Proton translocating ATPase: issues in structure and function. Kidney International 33: 767–774

    Article  PubMed  CAS  Google Scholar 

  20. Wieczorek H, Brown D, Grinstein S, et al (1999) Animal plasma membrane energization by proton-motive V-ATPases. Biol Essays 21: 637–648

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Italia

About this paper

Cite this paper

Magder, S. (2002). A “Post-copernican” Analysis of Intracellular pH. In: Gullo, A. (eds) Anaesthesia, Pain, Intensive Care and Emergency Medicine — A.P.I.C.E.. Springer, Milano. https://doi.org/10.1007/978-88-470-2099-3_50

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2099-3_50

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0176-3

  • Online ISBN: 978-88-470-2099-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics