Aspiration of Airway Dead Space: a New Method to Enhance CO2 Elimination

  • E. De Robertis
  • B. Jonson
  • R. Tufano
Conference paper


Mechanical ventilation is a life-saving therapeutic modality in the treatment of critical diseases such as the acute respiratory injury (ALI) and the acute respiratory distress syndrome (ARDS). However, it can contribute to the progression of pulmonary disease by generating a “ventilatory-induced lung injury” (VILI) [1, 2]. VILI may contribute to morbidity and mortality in ARDS with multiple mechanisms. Trauma resulting from high airway pressure and over-distension may lead to air leakage [3]. Repeated lung collapse and re-expansion leads to important shear forces [4].


Tidal Volume Acute Respiratory Distress Syndrome Dead Space Respir Crit Acute Respiratory Distress Syndrome Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dreyfuss D, Saumon G (1993) Role of tidal volume, FRC, and end-inspiratory volume in the development of pulmonary oedema following mechanical ventilation. Am Rev Respir Dis 148: 1194–1203PubMedGoogle Scholar
  2. 2.
    Dreyfuss D, Saumon G ( 1998) Ventilator-induced lung injury. Lesson from experimental studies. Am J Respir Crit Care Med 157: 294–323PubMedGoogle Scholar
  3. 3.
    Dreyfuss D, Soler P, Basset G, Saumon G (1985) High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end expiratory pressure. Am Rev Respir Dis 132: 880–4PubMedGoogle Scholar
  4. 4.
    Mead J, Takishima T, Leith D (1970) Stress distribution in lungs: a model of pulmonary elasticity. J Appl Physiol 28: 596–608PubMedGoogle Scholar
  5. 5.
    Roupie E, Dambrosio M, Servillo G et al (1995) Titration of tidal volume and induced hypercapnia in acute respiratory distress syndrome. Am J Respir Crit Care Med 152: 121–128PubMedGoogle Scholar
  6. 6.
    Reynolds EOR (1971) Effect of alteration in mechanical ventilator settings on pulmonary gas excahnge in hyaline membrane disease. Arch Dis Child 46: 152–159PubMedCrossRefGoogle Scholar
  7. 7.
    Jonson B (1982) Positive Airway Pressure: Some physical and biological effects. In: Prakash O (ed) Applied physiology in clinical respiratory care. Martinus Nijhoff, The Hague, pp 125–139Google Scholar
  8. 8.
    Lachmann B, Danzmann E, Haendly B, Jonson B (1982) Ventilator settings and gas exchange in respiratory distress syndrome. In: A Prakash O (ed) Applied physiology in clinical respiratory care. Martinus Nijhoff, The Hague, pp 141–176Google Scholar
  9. 9.
    Lachmann B, Jonson B, Lindroth M, Robertson B (1982) Modes of artificial ventilation in severe respiratory distress syndrome. Crit Care Med 10(11): 724–732PubMedCrossRefGoogle Scholar
  10. 10.
    Wagner PD (1989) HFV and pulmonary physiology. Acta Anaesthesiol Scand 33(S 90): 172–175CrossRefGoogle Scholar
  11. 11.
    Jonson B (1989) Clinical aspects of HFV. Acta Anaesthesiol Scand 33(S 90): 177–178CrossRefGoogle Scholar
  12. 12.
    Jonson B, Lachmann B, Fletcher R (1989) Monitoring of physiological parameters during high frequency ventilation (HFV). Acta Anaesthesiol Scand 33(S 90): 165–169CrossRefGoogle Scholar
  13. 13.
    Dambrosio M, Roupie E, Mollet JJ et al (1997) Effects of PEEP and different tidal volumes on alveolar recruitment and hyperinflation. Anesthesiology 87: 495–503PubMedCrossRefGoogle Scholar
  14. 14.
    Hickling KG (1998) The pressure-volume curve is greatly modified by recruitment. A mathematical model of ARDS lungs. Am J Respir Crit Care Med 158: 194–202PubMedGoogle Scholar
  15. 15.
    Gattinoni L, Pesenti A, Mascheroni D et al (1986) Low frequency positive pressure ventilation with extracorporeal CO2 removal in severe acute respiratory failure. JAMA 256: 881–886PubMedCrossRefGoogle Scholar
  16. 16.
    Jonson B, Similowski T, Levy P et al (1990) Expiratory flushing of airways: a method to reduce dead space ventilation. Eur Respir J 3: 1202–1205PubMedGoogle Scholar
  17. 17.
    Nahum A, Burke WC, Ravenscraft SA et al (1992) Lung mechanics and gas exchange during pressure controlled ventilation in dogs: augmentation of CO2 elimination by an intratracheal catheter. Am Rev Respir Dis 146: 965–973PubMedGoogle Scholar
  18. 18.
    Ravenscraft SA, Burke WC, Nahum A et al (1993) Tracheal gas insufflation augments CO2 clearance during mechanical ventilation. Am Rev Respir Dis 148: 345–351PubMedGoogle Scholar
  19. 19.
    Marini JJ (1996) Adjunctive ventilation with tracheal gas insufflation-Good vibrations? Crit Care Med 24(3): 375–377PubMedCrossRefGoogle Scholar
  20. 20.
    Servillo G, Svantesson C, Beydon L et al (1997) Pressure-volume curves in acute respiratory failure. Automated low flow inflation versus occlusion. Am J Respir and Crit Care Med 155: 1629–1636Google Scholar
  21. 21.
    Svantesson C, Drefeldt B, Jonson B (1997) The static pressure-volume relationship of the respiratory system determined with a computer-controlled ventilator. Clinical Physiology 17: 419–430PubMedCrossRefGoogle Scholar
  22. 22.
    Svantesson C, Drefeldt B, Sigurdsson S et al (1999) A single computer-controlled mechanical insufflation allows determination of the pressure-volume relationship of the respiratory system. J Clin Monit 15: 9–16CrossRefGoogle Scholar
  23. 23.
    Servillo G, De Robertis E, Coppola M et al (2000) Application of a computerised method to measure static pressure volume curve in acute respiratory distress syndrome. Int Care Med 26: 11–14CrossRefGoogle Scholar
  24. 24.
    Liu JM, De Robertis E, Blomquist S et al (1999) Elastic pressure-volume curves of the respiratory system reveal a high tendency to lung collapse in young pigs. Int Care Med 25: 1140–1146CrossRefGoogle Scholar
  25. 25.
    De Robertis E, Liu JM, Blomquist S et al (2001) Elastic properties of the lung and chest wall in young and adult healthy pigs. Eur Respir J 17: 703–711PubMedCrossRefGoogle Scholar
  26. 26.
    De Robertis E, Sigurdsson SE, Drefeldt B, Jonson B (1999) Aspiration of airway dead space: a new method to enhance CO2 elimination. Am J Respir and Crit Care Med 159: 728–732Google Scholar
  27. 27.
    De Robertis E, Servillo G, Jonson B, Tufano R (1999) Aspiration of dead space allows normocapnic ventilation at low tidal volumes in man. Int Care Med 25: 674–679CrossRefGoogle Scholar
  28. 28.
    De Robertis E, Servillo G, Tufano R, Jonson B (2001) Aspiration of Dead Space Allows Isocapnic Low Tidal Volume Ventilation in Acute Lung Injury. Relationships to Gas Exchange and Mechanics. Int Care Med in pressGoogle Scholar
  29. 29.
    Boots RJ, Howe S, George N et al (1997) Clinical utility of hygroscopic heat and moisture exchangers in intensive care patients. Crit Care Med 25: 1707–1712PubMedCrossRefGoogle Scholar
  30. 30.
    Jonson B, Richard JC, Straus C et al (1999) Pressure-volume curves in acute lung injury. Evidence of recruitment above the lower inflection point. Am J Respir Crit Care Med 159: 1172–1178PubMedGoogle Scholar
  31. 31.
    Gattinoni L, Pesenti A, Bombino M, et al (1988) A Relationships between lung computed tomographic density, gas exchange, and PEEP in acute respiratory failure. Anesthesiology 69: 824–832PubMedCrossRefGoogle Scholar
  32. 32.
    Ranieri VM, Suter PM, Tortorella C et al (1999) Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome. A randomized Controlled Trial. JAMA 282(1): 54–61PubMedCrossRefGoogle Scholar
  33. 33.
    Amato MBP, Barbas CSV, Medeiros DM et al (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338: 347–354PubMedCrossRefGoogle Scholar
  34. 34.
    Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network (2000). N Engl J Med 342: 1301–1308Google Scholar

Copyright information

© Springer-Verlag Italia 2002

Authors and Affiliations

  • E. De Robertis
    • 1
  • B. Jonson
    • 2
  • R. Tufano
    • 1
  1. 1.Department of Anaesthesia and Intensive CareNaples University “Federico II”NaplesItaly
  2. 2.Department of Clinical PhysiologyUniversity HospitalLundSweden

Personalised recommendations