Homeostasis — Basics, Definitions, Clinical Evidence

  • A. Gullo
  • M. L. Chierego
Conference paper


Homeostasis is the ability of the human body’s organs and tissues to maintain stable biohumoral conditions within the body. Partial oxygen and carbon dioxide pressure, the concentration of nutrients and waste products, osmotic pressure, the concentrations of several cations and anions, and the volume of the internal fluid environment are all maintained within a certain range of values considered to be normal. The kidneys play a primary role in regulating the concentration of metabolic waste, osmotic pressure, and the volume and composition of the internal environment. The lungs supply the oxygen needed by the cells and eliminate carbon dioxide. The digestive system provides nutrients. Many regulatory mechanisms operate according to the “negative feedback” principle: any deviation from a certain set point is detected by specific receptors. These “detectors” are able to trigger mechanisms that promote compensatory responses and eventually restore conditions of normality.


Metabolic Acidosis Lactic Acidosis Extracellular Fluid Plasma Osmolarity Metabolic Alkalosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gluck SL (1998) Acid-base. Lancet 352: 474–479PubMedCrossRefGoogle Scholar
  2. 2.
    Gilfix BM, Bique M, Magder S (1993) A physical chemical approach to the analysis of acid-base balance in the clinical setting. J Crit Care 8: 187–197PubMedCrossRefGoogle Scholar
  3. 3.
    Rose BD (1989) Introduction to simple and mixed acid-base disorders. In: Rose BD (ed) Clinical physiology of acid-base and electrolyte disorders, 3rd edn. McGraw-Hill, pp 464–477Google Scholar
  4. 4.
    Smith H, Lumb PD (1992) Acid-base balance. In: Barash PG, Cullen BF, Stoelting RK (eds) Clinical anesthesia 2nd edn. Lippincott, Philadelphia, pp 237–250Google Scholar
  5. 5.
    Narins RG, Emmett M (1980) Simple and mixed acid-base disorders: a practical approach. Medicine (Baltimore) 59: 161–187Google Scholar
  6. 6.
    Oster JR, Perez GO, Materson BJ (1977) Clinical use of the anion gap. Medicine (Baltimore) 56: 38–54Google Scholar
  7. 7.
    Winter SD, Pearson JR, Gabow PA, et al (1990) The fall of serum anion gap. Arch Intern Med 150: 311–313PubMedCrossRefGoogle Scholar
  8. 8.
    Salem MM, Mujais SM (1992) Gaps in anion gap. Arch Intern Med 152: 1625–1629PubMedCrossRefGoogle Scholar
  9. 9.
    Fencl V, Rossing TH (1989) Acid-base disorders in clinical care medicine. Annu Rev Med 40: 17–29PubMedCrossRefGoogle Scholar
  10. 10.
    Friedman BS, Lumb PD (1990) Prevention and management of metabolic alkalosis. J Intensive Care Med 5[Suppl]: S22–S27Google Scholar
  11. 11.
    Galla JH, Luke RG (1987) Pathophysiology of metabolic alkalosis. Hosp Pract 22: 123–146Google Scholar
  12. 12.
    Stone DK, Seldin DW, Kokko JP, Jacobson HR (1983) Mineralocorticoid modulation of rabbit medullary collecting duct acidification. A sodium-independent effect. J Clin Invest 72: 77–83PubMedCrossRefGoogle Scholar
  13. 13.
    Jacobson HR (1984) Medullary collecting duct acidification. J Clin Invest 74: 2107–2114PubMedCrossRefGoogle Scholar
  14. 14.
    Silvestri L, Viviani M, Berlot G, Gullo A (1995) Fisiologia dell’equilibrio acido-base. In: Aspetti di fisiopatologia, clinici e di monitoraggio in anestesiologia, vol.1. Trieste: APICE: 4–58Google Scholar
  15. 15.
    Guyton AC (1991) Textbook of medical physiology, 8th edn. Saunders, Philadelphia, pp 341–348Google Scholar
  16. 16.
    Marino PL (1998) Osmolalità plasmatica. ICU Book, 2nd edn. Williams and Wilkins, pp 632–633Google Scholar
  17. 17.
    Sklar AK, Linas SL (1983) The osmolar gap in renal failure. Ann Intern Med 98: 481–482PubMedGoogle Scholar
  18. 18.
    Geheb M (1987) Clinical approach to the hyperosmolar patient. Crit Care Clin 5: 797–815Google Scholar
  19. 19.
    Guyton AC (1991) Textbook of medical physiology, 8th edn. Saunders, Philadelphia, pp 303–306Google Scholar
  20. 20.
    Luzzani A, Dal Corso B, Bianciardi L, Mastropasqua D (1995) Fattori di regolazione dei fluidi dei compartimenti nel periodo perioperatorio. In: Aspetti di fisiopatologia, clinici e di monitoraggio in anestesiologia, vol. 1. Trieste: APICE: 59–62Google Scholar
  21. 21.
    Oh MS, Carrol HJ (1992) Disorders of sodium metabolism: hypernatremia and hyponatremia. Crit Care Med 20: 94–103PubMedCrossRefGoogle Scholar
  22. 22.
    Kumar S, Berl T (1998) Electrolyte quintet, sodium. Lancet 352: 220–228PubMedCrossRefGoogle Scholar
  23. 23.
    Schrier RW, Briner VA (1990) The differential diagnosis of hyponatremia. Hosp Pract 25: 29–37Google Scholar
  24. 24.
    Weisberg LS (1988) Pseudohyponatremia: a reappraisal. Am J Med 86: 315–318CrossRefGoogle Scholar
  25. 25.
    Ayus JC, Arieff AI (1990) Symptomatic hyponatremia: making the diagnostic rapidly. J Crit Illness; 5: 846–856Google Scholar
  26. 26.
    Zarinetchi F, Berl T (1996) Evaluation and management of severe hyponatremia. Adv Intern Med 41: 251PubMedGoogle Scholar
  27. 27.
    Linas S, Berl T, Robertson G, et al (1980) Role of vasopressin in the impaired water excretion of glucocorticoid deficiency. Kidney Int 18: 58PubMedCrossRefGoogle Scholar
  28. 28.
    Marino PL (1998) Sindromi ipertoniche ed ipotoniche. ICU book, 2nd edn. Williams and Wilkins, pp 631–646Google Scholar
  29. 29.
    Macaulay D, Watson M (1967) Hypernatraemia as a cause of brain damage. Arch Dis Child 42: 485PubMedCrossRefGoogle Scholar
  30. 30.
    Blevins LS, Wand GS (1992) Diabetes insipidus. Crit Care Med 20: 69–79PubMedCrossRefGoogle Scholar
  31. 31.
    Tannen R, Regal E, Dunn M, et al (1969) Vasopressin resistant hyposthenuria in advanced chronic renal disease. N Engl J Med 280: 1135PubMedCrossRefGoogle Scholar
  32. 32.
    Teitelbaum I, McGuinness S (1955) Vasopressin resistance in chronic renal failure. J Clin Invest 96: 378CrossRefGoogle Scholar
  33. 33.
    Halperin ML, Kamel S (1998) Electrolyte quintet. Potassium. Lancet 352: 135–140PubMedGoogle Scholar
  34. 34.
    Clausen T, Everts ME (1989) Regulation of the Na/K-pump in skeletal muscle. Kidney Int 35: 1–13PubMedCrossRefGoogle Scholar
  35. 35.
    Sterns RH, Cox M, Feig PU, Singer I (1981) Internal potassium balance and the control of the plasma potassium balance. Medicine (Baltimore) 60: 339–351CrossRefGoogle Scholar
  36. 36.
    Williams ME, Gervino EV, Rosa RM et al (1985) Catecholamine modulation of rapid potassium shifts during exercise. N Engl J Med 312: 823–827PubMedCrossRefGoogle Scholar
  37. 37.
    Burger GA, Howard R (1993) Acidosis and [K+]. Anesth Analg 76: 680PubMedCrossRefGoogle Scholar
  38. 38.
    Kamel KS, Quaggin S, Scheich A, Halperin ML (1994) Disorders of potassium homeostasis: an approach based on pathophysiology. Am J Kidney Dis 24: 597–613PubMedGoogle Scholar
  39. 39.
    Freedman BI, Burkhart JM (1991) Hypokalemia. Crit Care Clin 7: 143–153PubMedGoogle Scholar
  40. 40.
    Adroguè HJ, Madias NE (1981) Changes in plasma potassium concentration during acute acid-base disturbances. Am J Med 71: 456–466PubMedCrossRefGoogle Scholar
  41. 41.
    Magner PO, Robinson L, Halperin RM, et al (1988) The plasma potassium concentration in metabolic acidosis: a re-evaluation. Am J Kidney Dis 11: 220–224PubMedGoogle Scholar
  42. 42.
    Whang R, Flink EB, Dyckner T. et al (1985) Mg depletion as a cause of refractory potassium depletion. Arch Intern Med 145: 1686–1689PubMedCrossRefGoogle Scholar
  43. 43.
    Fawcett WJ, Haxby EJ, Male DA (1999) Magnesium: physiology and pharmacology. Br J Anaesth 83: 302–320PubMedCrossRefGoogle Scholar
  44. 44.
    Allon M (1993) Treatment and prevention of hyperkalemia in end-stage renal disease. Kidney Int 43: 1197–1209PubMedCrossRefGoogle Scholar
  45. 45.
    Williams ME, Rosa RM (1988) Hyperkalemia: disorders of internal and external potassium balance. J Intensive Care Med 3: 52–64CrossRefGoogle Scholar
  46. 46.
    James MFM (1999) Magnesium: quo vadis?. Br J Anaesth 83: 202–203PubMedCrossRefGoogle Scholar
  47. 47.
    The Eclampsia Trial Collaborative Group (1995) Which anticonvulsant for women with eclampsia? Evidence from the Collaborative Eclampsia Trial. Lancet 345: 1455–1463Google Scholar
  48. 48.
    Seelig MS, Elin RJ, Antman EM (1998) Magnesium in acute myocardial infarction: still an open question. Can J Cardiol 14: 745–749PubMedGoogle Scholar
  49. 49.
    McLean RM (1994) Magnesium and its therapeutic uses: a review. Am J Med 96: 63–76PubMedCrossRefGoogle Scholar
  50. 50.
    Frakes MA, Richardson LE (1997) Magnesium sulfate therapy in certain emergency conditions. Am J Emerg Med 15: 182–187PubMedCrossRefGoogle Scholar
  51. 51.
    O’Riordan JA (1997) Pheochromocytoma and anesthesia. Int Anesthesiol Clin 35: 99–127PubMedCrossRefGoogle Scholar
  52. 52.
    Bushinsky DA, Monk RD (1998) Electrolyte quintet. Calcium. Lancet 352: 306–311PubMedCrossRefGoogle Scholar
  53. 53.
    Foreman DT, Lorenzo L (1991) Ionized calcium: it’s significance and clinical usefulness. Ann Clin Lab Sci 21: 297–304Google Scholar
  54. 54.
    Gary P, Zaloga MD (1992) Hypocalcemia in critically ill patients. Crit Care Med 20: 251–262CrossRefGoogle Scholar
  55. 55.
    Reber PM, Heath H (1995) Hypocalcemic emergencies. Med Clin North Am 79: 93–106PubMedGoogle Scholar
  56. 56.
    Zaloga GP (1992) Hypocalcemia in critically ill patients. Crit Care Med 20: 251–262PubMedCrossRefGoogle Scholar
  57. 57.
    Burchard KW, Simms H, Robinson A, et al (1992) Hypocalcemia during sepsis. Arch Surg 127: 265–272PubMedCrossRefGoogle Scholar
  58. 58.
    Steinberg W, Tenner S (1994) Acute pancreatitis. N Engl J Med 330: 1198–1210PubMedCrossRefGoogle Scholar
  59. 59.
    Mundy GR (1994) Evaluation and treatment of hypercalcemia. Hosp Pract 29: 79–86Google Scholar
  60. 60.
    Bilezikian JP (1993) Management of hypercalcemia. J Clin Endocrinol Metab 77: 1445–1449PubMedCrossRefGoogle Scholar
  61. 61.
    Griffel MI, Kaufman BS (1992) Pharmacology of colloids and crystalloids. Crit Care Clin 8: 235–254PubMedGoogle Scholar
  62. 62.
    Kaminski MV, Haase TJ (1992) Albumin and colloid osmotic pressure: implications for fluid resuscitation. Crit Care Clin 8: 311–322PubMedGoogle Scholar
  63. 63.
    Mercuriali F, Inghilleri G (2000) Albumin in critical care—use, abuse or misuse. In: Gullo A (ed) APICE. Springer, Berlin Heidelberg New York, pp 883–890Google Scholar
  64. 64.
    Doweiko JP, Nompleggi DJ (1991) Role of albumin in human physiology and pathophysiology. J Parent Enter Nutr 15: 207–211CrossRefGoogle Scholar
  65. 65.
    Guthrie RD Jr, Hines C Jr (1991) Use of albumin in the critically ill patient. Am J Gastroenterol 86: 255–63PubMedGoogle Scholar
  66. 66.
    Imm A, Carlson RW (1993) Fluid resuscitation in circulatory shock. Critl Care Clin 9: 313–333Google Scholar
  67. 67.
    Cochrane Injuries Group (1998) Human albumin administration in critically ill patients: systematic review of randomised controlled trials. BMJ 317: 235–240CrossRefGoogle Scholar
  68. 68.
    Madias NE (1986) Nephrology forum: lactic acidosis. Kidney Int 29: 752–774PubMedCrossRefGoogle Scholar
  69. 69.
    Stacpoole PW, Wright EC, Baumgartner TG (1994) Natural history and course of acquired lactic acidosis in adults. Am J Med 97: 47–54PubMedCrossRefGoogle Scholar
  70. 70.
    Huckabee WE (1958) Relationships of pyruvate and lactate during anaerobic metabolism. Effects of infusion of pyruvate or glucose and of hyperventilation. J Clin Invest 37: 244PubMedCrossRefGoogle Scholar
  71. 71.
    Broader G, Weil MH (1964) Excess lactate: an index of reversibility of shock in human patients. Science 143: 1457CrossRefGoogle Scholar
  72. 72.
    Kruse JA, Metha KC, Carlson RW (1987) Definition of clinically significant lactic acidosis. Chest 95[Suppl]: 100Google Scholar
  73. 73.
    Robertson R, Eidt J, Bitzer L, et al (1995) Severe acidosis alone does not predict mortality in the trauma patient. Am J Surg 170: 691–695PubMedCrossRefGoogle Scholar
  74. 74.
    Weiskopf RB, Fairley HB (1982) Anaesthesia for major trauma. Surg Clin North Am; 62: 31PubMedGoogle Scholar
  75. 75.
    Davis JW, Shackford SR, Mackersie RC, Hoyt DB (1988) Base deficit as a guide to volume resuscitation. J Trauma 28: 1464PubMedCrossRefGoogle Scholar
  76. 76.
    Falcone RE, Santanello SA, Schulz MA, et al (1993) Correlation of metabolic acidosis with outcome following injury and its value as a scoring tool. World J Surg 17: 575–579PubMedCrossRefGoogle Scholar
  77. 77.
    Bakker J (1999) Blood lactate levels. Curr Opin Crit Care 5: 234–239CrossRefGoogle Scholar
  78. 78.
    Aduen J, Bernstein WK, Khastgir T (1994) The use and clinical importance of a sub-strate specific electrode for rapid determination of blood lactate concentrations. JAMA 272: 1678–1685PubMedCrossRefGoogle Scholar
  79. 79.
    Auler JOC Jr, Coppola Gimenez S, Mondeiro Abbelani D (1999) Perioperative management strategy for cardiac surgery in pediatric patients. In: Gullo A (ed) APICE. Springer, Berlin Heidelberg New York, p 255Google Scholar
  80. 80.
    Gutierrez G, Wulf ME (1996) Lactic acidosis in sepsis: a commentary. Intensive Care Med 22: 6–16PubMedCrossRefGoogle Scholar
  81. 81.
    Cohen RD, Woods HF (1976) The clinical presentation and classification of lactic acidosis. In: Cohen RD, Woods HF (eds) Blackwell Scientific, OxfordGoogle Scholar
  82. 82.
    Stacpoole PW (1993) Lactic acidosis. Endocrinol Metab Clin North Am 22: 221–245PubMedGoogle Scholar
  83. 83.
    Schmiechen NJ, Han C, Milzman DP (1997) ED use of rapid lactate to evaluate patients with acute chest pain. Ann Emerg Med 30: 571–577PubMedCrossRefGoogle Scholar
  84. 84.
    Mavric Z, Zaputovic L (1991) Usefulness of blood lactate as a predictor of shock development in acute myocardial infarction. Am J Cardiol 67: 565–68PubMedCrossRefGoogle Scholar
  85. 85.
    Henning RJ, Weil MH, Weiner F (1982) Blood lactate as prognostic indicator of survival in patients with acute myocardial infarction Circ Shock 9: 307–315Google Scholar
  86. 86.
    Sauaia A, Moore FA (1998) Multiple organ failure can be predicted as early as 12 hours after injury. J Trauma 45: 291–301PubMedCrossRefGoogle Scholar
  87. 87.
    Hutchinson PJ, al-Rawi PG (2000) On-line monitoring of substrate delivery and brain metabolism in head injury. Acta Neurochir [Suppl] 76:431–35Google Scholar
  88. 88.
    Scalea TM, Maltz S (1994) Resuscitation of multiple trauma and head injury: role of crystalloid fluids and inotropes. Criti Care Med 22: 1610–1615Google Scholar
  89. 89.
    Vary TC (1996) Sepsis-induced alterations in pyruvate dehydrogenase complex activity in rat skeletal muscle. Shock 6: 89–94PubMedCrossRefGoogle Scholar
  90. 90.
    Bakker J, Gris P (1996) Serial blood lactate levels can predict the development of multiple organ failure following septic shock. Am J Surg 171: 221–226PubMedCrossRefGoogle Scholar
  91. 91.
    Adroguè JH (1992) Glucose homeostasis and the kidney. Kidney Int 42: 1266–1282.PubMedCrossRefGoogle Scholar
  92. 92.
    Malayappa J, Petersen SC, Shamos RF (1993) Protein and glucose fuel kinetics and hormonal changes in elderly trauma patients. Metabolism 42: 1255–1262CrossRefGoogle Scholar
  93. 93.
    Iscra F, Margarit O, Limback-Stanic C, Bedin F (1995) Interazioni tra metabolismo e anestesia. In: Aspetti di fisiopatologia, clinici e di monitoraggio in anestesiologia, vol.1. APICE, Trieste, p 117Google Scholar
  94. 94.
    Chernow B, Alexander HR, Smallridge RC, et al (1987) Hormonal responses to graded surgical stress. Arch Intern Med 147: 1273–1278PubMedCrossRefGoogle Scholar
  95. 95.
    Weissman C (1990) The metabolic response to stress: an overview and update. Anesthesiology 73: 308–326PubMedCrossRefGoogle Scholar
  96. 96.
    Iscra F, Bedin F, Limback-Stanic C, Margarit O (1995) Fattori di regolazione del metabolismo e della funzione endocrina. In: Aspetti di fisiopatologia, clinici e di monitoraggio in anestesiologia, vol.2. APICE, Trieste, pp 173–188Google Scholar
  97. 97.
    Woolf PD (1992) Hormonal response to trauma. Crit Care Med 20: 216–226PubMedCrossRefGoogle Scholar
  98. 98.
    Duggan M, Browne I, Flynn C (1998) Adrenal failure in the critically ill. Br J Anaesth 81: 467–469CrossRefGoogle Scholar
  99. 99.
    Weissman C (1990) Response to stress: an overview and update. Anesthesiology 73: 308–327PubMedCrossRefGoogle Scholar
  100. 100.
    Chernow B, Rainey TG, Lake CR (1982) Endogenous and exogenous catecholamines in critical care medicine. Crit Care Med 10: 409–416PubMedCrossRefGoogle Scholar
  101. 101.
    Masterson GR, Mostafa SM (1998) Adrenocortical function in critical illness. Br J Anaesth 81: 308–310PubMedCrossRefGoogle Scholar
  102. 102.
    Buckingham JC (1985) Hypothalamo-pituitary responses to trauma. Br Med Bull 41: 203–211PubMedGoogle Scholar
  103. 103.
    Oppenheimer JH, Schwartz HL, Strait KA (1994) Thyroid hormone action 1994: the plot thickens. Eur J Endocrinol 130: 15–24PubMedCrossRefGoogle Scholar
  104. 104.
    Smallridge R (1992) Metabolic and anatomic thyroid emergencies: a review. Crit Care Med 20: 276–291PubMedCrossRefGoogle Scholar
  105. 105.
    Brandolese R, Andreose U (1996) Scambio gassoso. In: Aspetti di fisiopatologia, clinici e di monitoraggio in anestesiologia, vol.2. APICE, Trieste, pp 43–44Google Scholar
  106. 106.
    Guyton AC (1991) Textbook of medical physiology. 8th edn., Saunders, Philadelphia, pp 464–466Google Scholar
  107. 107.
    Marino PL (1998) Oxygen transport. ICU Book, 2nd edn. Williams and Wilkins, pp 18–30Google Scholar
  108. 108.
    Assmussen E, Nielsen M (1960) Alveolo-arterial gas exchange at rest and during work at different O2 tensions. Acta Anesthesiol Scand 50: 153–166Google Scholar
  109. 109.
    Hayes MA, Timmins AC, Yau EHS, et al (1994) Elevation of systemic oxygen delivery in the treatment of critically ill patients. N Engl J Med 330: 1717–1722PubMedCrossRefGoogle Scholar
  110. 110.
    Yu M, Levy MM, Smith P, et al (1993) Effect of maximizing oxygen delivery on morbidity and mortality rates in critically ill patients: a prospective, randomized, controlled study. Crit Care Med 21: 830–838PubMedCrossRefGoogle Scholar
  111. 111.
    Rudis MI, Pharm D, Basha MA, Zarowitz BJ (1996) Is it time to reposition vasopressors and inotropes in sepsis?. Crit Care Med 24: 525–537PubMedCrossRefGoogle Scholar
  112. 112.
    Shoemaker WC, Appel PL, Kram HB, et al (1988) Prospective trial of supranormal values of survivors as therapeutic goals in high-risk surgical patients. Chest 94: 1176–1186PubMedCrossRefGoogle Scholar
  113. 113.
    Russel JA, Phang PT (1994) The oxygen delivery/consumption controversy. Approaches to management of the critically ill. Am J Crit Care Med 149: 533–537Google Scholar
  114. 114.
    Chiolero R, Flatt J-P, Revelly J-P, Jequier E (1991) Effects of cathecolamines on oxygen consumption and oxygen delivery in critically ill patients. Chest 100: 1676–1684PubMedCrossRefGoogle Scholar
  115. 115.
    Hayes MA, Yau EHS, Hinds CJ et al (1992) Symmetrical peripheral gangrene: association with noradrenaline administration. Intensive Care Med 18: 433–436PubMedCrossRefGoogle Scholar
  116. 116.
    Shoemaker WC, Appel PL, Kram HB (1986) Hemodynamic and oxygen transport effects of dobutamine in critically ill general surgical patients. Crit Care Med 14: 1032–1037PubMedCrossRefGoogle Scholar
  117. 117.
    Marino PL (1998) Vasoactive drugs. ICU Book, 2nd edn. Williams and Wilkins, pp 273–294Google Scholar
  118. 118.
    Trujillo MH, Arai K, Bellorin-Font E (1994) Practical guide for drug administration by intravenous infusion in intensive care units. Crit Care Med 22: 1049–1063PubMedCrossRefGoogle Scholar
  119. 119.
    Klem C, Dasta JF, Reilley TE, Flancbaum LJ (1994) Variability in dobutamine pharmacokinetics in unstable critically ill surgical patients. Crit Care Med 22: 1926–1932PubMedGoogle Scholar
  120. 120.
    Connors AF Jr., Speroff T, Dawson NV, et al (1996) The effectiveness of right heart catheterization in the initial care of critically ill patients. JAMA 276: 889–897PubMedCrossRefGoogle Scholar
  121. 121.
    Sinclair S, James S, Singer M (1997) Intraoperative intravascular volume optimisation and length of hospital stay after repair of proximal femoral fracture: randomised controlled trial. BMJ 315: 909–912PubMedCrossRefGoogle Scholar
  122. 122.
    Mythen MG, Webb AR (1994) The role of gut mucosal hypoperfusion in the pathogenesis of postoperative organ dysfunction. Intensive Care Med 20: 203–209PubMedCrossRefGoogle Scholar
  123. 123.
    Pittard AJ, Hawkins WJ, Webster NR (1994) The role of the microcirculation in the multi-organ dysfunction syndrome. Clin Intensive Care 5: 186–190PubMedGoogle Scholar
  124. 124.
    Takala J (1994) Splanchnic perfusion in shock. Intensive Care Med 20: 403–404PubMedCrossRefGoogle Scholar
  125. 125.
    Mythen MG, Webb AR (1995) Perioperative plasma volume expansion reduce the incidence of gut mucosal hypoperfusion during cardiac surgery. Ann Surg 130: 423–429Google Scholar
  126. 126.
    Marik PE, Iglesias J, Marini B (1997) Gastric intramucosal pH changes after volume replacement with hydroxyethyl starch or crystalloid in patients undergoing elective abdominal aortic aneurism repair. J Crit Care 12: 51–55PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2002

Authors and Affiliations

  • A. Gullo
    • 1
  • M. L. Chierego
    • 1
  1. 1.Department of Clinical Sciences, Section of Anaesthesia, Intensive Care and Pain ClinicTrieste University School of MedicineTriesteItaly

Personalised recommendations