How Permissive Should Hypercapnia Be?

  • G. Servillo
  • L. D’amato
  • R. Tufano
Conference paper


The alteration of gas exchange is one of the main characteristics of acute respiratory distress syndrome (ARDS), and the first approaches aim to normalize blood gas values. Large tidal volumes and high peak inspiratory pressure were used, restricted only for the risk of pneumothorax and hemodynamic impairment. An evolving body of experimental studies, conducted over the last decades, have demonstrated ventilator-induced lung injury (VILI). They also demonstrated that mechanical ventilation with high peak inspiratory pressure induces a “dose”-dependent exudative pulmonary edema, correlated more to high tidal volume excursion than to high inspiratory pressure [1, 2].


Cerebral Blood Flow Tidal Volume Acute Lung Injury Acute Respiratory Distress Syndrome Respir Crit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Webb HH, Tierny DF (1974) Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressure: protection by positive end-expiratory pressure. Am Rev Respir Dis 110: 556–565PubMedGoogle Scholar
  2. 2.
    Dreyfuss DG, Soler P, Basset G, et al (1988) High inflation pressure pulmonary edema: respective effects of airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis 137: 1159–1164PubMedGoogle Scholar
  3. 3.
    Servillo G, Svantesson C, Beydon L, et al (1997) Pressure-volume curves in acute respiratory failure: automated low flow inflation versus occlusion. Am J Respir Crit Care Med 155: 1629–1636PubMedGoogle Scholar
  4. 4.
    Servillo G, De Robertis E, Coppola, et al (2000) Application of a computerised method to measure static pressure volume curve in acute respiratory distress syndrome. Intensive Care Med 26: 11–14PubMedCrossRefGoogle Scholar
  5. 5.
    Pesenti A (1990) Target blood gases during ARDS ventilatory menagement. Intensive Care Med 16: 349–351PubMedCrossRefGoogle Scholar
  6. 6.
    Gothgen IH, Berthelsen PG, Rasmussen JP, et al (1993) Ventilation in ARDS and asthma: the optimal blood gas values. Scand J Clin Lab Invest 53[Suppl 214]: 67–73CrossRefGoogle Scholar
  7. 7.
    Nunn JF (1987) The effects of changes in carbon dioxide tension. In: Applied respiratory physiology, 3rd edn Butterworth, London, pp 460–470Google Scholar
  8. 8.
    Brofman JD, Leff AR, Munoz NM, et al (1990) Sympathetic secretory response to hypercapnic acidosis in swine. J Appl Physiol 69: 710–717PubMedGoogle Scholar
  9. 9.
    Thomas RC (1984) Experimental displacement of intracellular pH and the mechanism of its subsequent recovery. J Physiol (Lond) 354: 3–22Google Scholar
  10. 10.
    Tang WC, Weil MH, Gazmuri RJ, et al (1991) Reversible impairment of myocardial contractility due to hypercarbic acidosis in the isolated perfused rat heart. Crit Care Med 19: 218–24PubMedCrossRefGoogle Scholar
  11. 11.
    Orchard C, Kentish J (1990) Effects of changes of pH on the contractile function of cardiac muscle. Am J Physiol 258: 967–981Google Scholar
  12. 12.
    Case RB, Greenberg H, Moskowitz R (1975) Alterations in coronary sinus PO2 and O2 saturation resulting from PCO2 changes. Cardiovasc Res 9: 167–177PubMedCrossRefGoogle Scholar
  13. 13.
    Wexels JC, Myhre ES (1987) Hypocapnia and hypercapnia in the dog: effects on myocardial blood-flow and haemodynamics during beta-and combined alpha-and beta-adrenoceptor blockade. Clin Physiol 7: 21–33PubMedCrossRefGoogle Scholar
  14. 14.
    Blackburn JP, Conway CM, Leigh JM, et al (1972) PaCO2 and the pre-ejection period: the PaCO2 /inotropy response curve. Anesthesiology 37: 268–276PubMedCrossRefGoogle Scholar
  15. 15.
    Prys-Roberts C, Kelman GR, Greenbaum R, et al (1967) Circulatory influences of artificial ventilation during nitrous oxide anaesthesia in man. II. Results: the relative influence of mean intrathoracic pressure and arterial carbon dioxide tension. Br J Anaesth 39: 533–548PubMedCrossRefGoogle Scholar
  16. 16.
    Viitanen A, Salmenperä M, Heinonen J (1990) Right ventricular response to hypercarbia after cardiac surgery. Anesthesiology 73: 393–400PubMedCrossRefGoogle Scholar
  17. 17.
    McLellan TM (1991) The influence of a respiratory acidosis on the exercise blood lactate response. Eur J Appl Physiol 63: 6–11CrossRefGoogle Scholar
  18. 18.
    Siesjö BK (1980) Cerebral metabolic rate in hypercarbia — a controversy. Anesthesiology 52: 461–465PubMedCrossRefGoogle Scholar
  19. 19.
    Berntman L, Dahlgren N, Siesjö BK (1979) Cerebral blood flow and oxygen consumption in the rat brain during extreme hypercarbia. Anesthesiology 50: 299–305PubMedCrossRefGoogle Scholar
  20. 20.
    Prough DS, Rogers AT, Stump DA, et al (1990) Hypercarbia depresses cerebral oxygen consumption during cardiopulmonary bypass. Stroke 21: 1162–1166PubMedCrossRefGoogle Scholar
  21. 21.
    Edvinsson L, McKenzie ET, McCulloch J (1993) Changes in arterial gas tensions. In: Cerebral blood flow and metabolism. Raven Press, New York, pp 524–552Google Scholar
  22. 22.
    Miller JD (1987) Cerebral blood flow variations with perfusion pressure and metabolism. In: Wood JH (ed) Cerebral blood flow. Physiologic and clinical aspects. McGraw-Hill, New York, pp 119–130Google Scholar
  23. 23.
    Lanier WL Weglinski MR 1991 Intracranial pressure. In Cucchiara RF Michenfelder JD ed Clinical neuroanesthesia. Churchill Livingstone New York pp 77–11.Google Scholar
  24. 24.
    Miller JD Sullivan HG 1979 Severe intracranial hypertension. In Trubuhovich RV ed Management of acute intracranial disaster. Little Brown Boston pp 19–35.Google Scholar
  25. 25.
    Eisele JH, Eger EI, Muallem M (1967) Narcotic properties of carbon dioxide in the dog. Anesthesiology 28: 856–865PubMedCrossRefGoogle Scholar
  26. 26.
    Juan G, Calverley P, Talamo C, et al (1984) Effect of carbon dioxide on diaphragmatic function in human beings. N Engl J Med 310: 874–879PubMedCrossRefGoogle Scholar
  27. 27.
    Gomes Vianna L, Koulouris N, Lanigan C, et al (1990) Effect of acute hypercapnia on limb muscle contractility in humans. J Appl Physiol 69: 1486–1493Google Scholar
  28. 28.
    Chen HG, Wood CE (1993) The adrenocorticotropic hormone and arginine vaspressin responses to hypercapnia in fetal and maternal sheep. Am J Physiol 264: 324–330Google Scholar
  29. 29.
    Raff H, Roarty TP (1988) Renin, ACTH and aldosterone during acute hypercapnia and hypoxia in conscious rats. Am J Physiol 254: 431–435Google Scholar
  30. 30.
    Butler J, Caro CG, Alcala R, et al (1960) Physiological factors affecting airway resistance in normal subjects and in patients with obstructive respiratory disease. J Clin Invest 39: 584–591PubMedCrossRefGoogle Scholar
  31. 31.
    Charney AN, Feldman GM (1984) Systemic acid-base disorders and intestinal electrolyte transport. Am J Physiol 247: 1–12Google Scholar
  32. 32.
    Gelman S, Ernst EA (1977) Role of pH, PCO2, and O2 content of portal blood in hepatic circulatory autoregulation. Am J Physiol 233: 255–262Google Scholar
  33. 33.
    Bersentes TJ, Simmons DH (1967) Effects of acute acidosis on renal hemodynamics. Am J Physiol 212: 633–640PubMedGoogle Scholar
  34. 34.
    Shibata K, Cregg N, Engelberts D, et al (1998). Hypercapnic acidosis may attenuate acute lung injury by inhibition of endogenous xanthine oxidase. Am J Respir Crit Care Med 158: 1578–1584PubMedGoogle Scholar
  35. 35.
    Laffey JG, Engelberts D, Kavanagh BP (2000) Buffering hypercapnic acidosis worsens acute lung injury. Am J Respir Crit Care Med 161: 141–146PubMedGoogle Scholar
  36. 36.
    Laffey JG, Kavanagh BP (1999) Carbon dioxide and critically ill — too little of a good thing? Lancet 354: 1283–1286PubMedCrossRefGoogle Scholar
  37. 37.
    Vannucci RC, Towfighi J, Heitjan D, et al (1995). Carbon dioxide protects the perinatal brain from hypoxic-ischemic damage: an experimental study in the immature rat. Pediatrics 95: 868–874PubMedGoogle Scholar
  38. 38.
    Allen DB, Maguire JJ, Mahdavian M, et al (1997) Would hypoxia and acidosis limit neutrophil bacterial killing mechanisms. Arch Surg 132: 991–996PubMedCrossRefGoogle Scholar
  39. 39.
    Xu L, Glassford AJ, Giaccia AJ, et al (1998) Acidosis reduces neuronal apoptosis. Neuroreport 9: 875–879PubMedCrossRefGoogle Scholar
  40. 40.
    Darioli R, Perret C (1984) Mechanical controlled hypoventilation in status asthmaticus. Am Rev Respir Dis 129: 385–387PubMedGoogle Scholar
  41. 41.
    Lee PC, Helsmoortel CM, Cohn SM, et al (1990) Are low tidal volumes safe? Chest 97: 430–434PubMedCrossRefGoogle Scholar
  42. 42.
    Hickling KG, Henderson SJ, Jackson R (1990) Low mortality associated with low volume pressure limited ventilation with permissive hypercapnia in severe adult respiratory distress syndrome. Intensive Care Med 16: 372–377PubMedCrossRefGoogle Scholar
  43. 43.
    Amato MBP, Barbas CSV, Medeiros DM, et al (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338: 347–354PubMedCrossRefGoogle Scholar
  44. 44.
    Stewart TE, Meade MO, Cook DJ, et al (1998) Evaluation of a ventilation strategy to prevent barotrauma in patients at high risk for acute respiratory distress syndrome. N Eng J Med 338: 355–361CrossRefGoogle Scholar
  45. 45.
    Brochard L, Roudot-Thoraval F, Roupie E, et al (1998) Tidal volume reduction for prevention of ventilator-induced lung injury in the acute respiratory distress syndrome.Am J Respir Crit Care Med 158: 1831–1838Google Scholar
  46. 46.
    Brower RG, Shanholtz CB, Fessier BE, et al (1999) Prospective, randomized, controlled clinical trial comparing traditional versus reduced tidal volume ventilation in acute respiratory distress syndrome patients. Crit Care Med 27: 1492–1498PubMedCrossRefGoogle Scholar
  47. 47.
    Gentilello LM, Anardi D, Mock C, et al (1995) Permissive hypercapnia in trauma patients. J Trauma 39: 846–852PubMedCrossRefGoogle Scholar
  48. 48.
    Feihl F, Perret C (1994) How permissive hypercapnia should be? Am Respir Crit Care Med 150: 1722–1737Google Scholar
  49. 49.
    Hickling KG, Walsh J, Henderson SJ, et al (1994) Low mortality rate in adult respiratory syndrome using low-volume, pressure-limited ventilation wiyh permissive hypercapnia: a prospective study. Crit Care Med 22: 1568–1578PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2002

Authors and Affiliations

  • G. Servillo
    • 1
  • L. D’amato
    • 2
  • R. Tufano
    • 1
  1. 1.Department of Anaesthesia and Intensive CareNaples University “Federico II”NaplesItaly
  2. 2.Department of Surgical, Anaesthesiological and Emergency SciencesNaples University “Federico II”NaplesItaly

Personalised recommendations