Advertisement

Optimization of Ventilation and Perfusion Matching

  • G. Hedenstierna
Conference paper

Abstract

In this chapter the distribution of pathology in acute respiratory failure (ARF) and acute respiratory distress syndrome (ARDS) will be discussed as well as the distributions of ventilation and lung blood flow (perfusion) and the consequences for ventilation-perfusion matching (V/Q). Finally, techniques to improve V/Q matching will be presented.

Keywords

Nitric Oxide Prone Position Acute Respiratory Distress Syndrome Pulmonary Artery Pressure Acute Respiratory Failure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rinaldo JE, Rogers RM (1982) Adult respiratory-distress syndrome. Changing concepts of lung injury and repair. N Eng J Med; 306:900–909CrossRefGoogle Scholar
  2. 2.
    Rommelsheim K, Lakner K, Westhofen P et al (1983) Das respiratorische Distress-Syndrome der Erwachsenen (ARDS) im Computer Tomogram. Anaesth Intensivther Notfallmed; 18:59–64CrossRefGoogle Scholar
  3. 3.
    Maunder RJ, Schuman WP, McHugh JW et al (1986) Preservation of normal lung regions in the adult respiratory distress syndrome. Analysis by computed tomography. JAMA; 255:2463–2465PubMedCrossRefGoogle Scholar
  4. 4.
    Gattinoni L, Pesenti A, Bombino M et al (1988) Relationships between lung computed tomographic density, gas exchange, and PEEP in acute respiratory failure. Anesthesiology; 69: 824–832PubMedCrossRefGoogle Scholar
  5. 5.
    Puybasset L, Cluzel P, Gusman P et al (2000) Regional distribution of gas and tissue in acute respiratory distress syndrome. I. Consequences for lung morphology. Intensive Care Med; 26; 857–869PubMedCrossRefGoogle Scholar
  6. 6.
    Tokics L, Hedenstierna G, Svensson L et al (1996) V/Q distribution and correlation to atelectasis in anesthetized paralyzed humans. J. Appl. Physiol.; 81: 1822–1833PubMedGoogle Scholar
  7. 7.
    Hedenstierna G (2000) Anesthesia and Gas Exchange. In: Pulmonary and Peripheral Gas Exchange in Health and Disease. Roca J, Rodriguez-Roisin R, Wagner PD, eds. Marcel Dekker Inc.: 177–198Google Scholar
  8. 8.
    Dantzker DR, Wagner PD, West JB (1975) Instability of lung units with low VA/Q ratios during O2 breathing. J Appl Physiol; 38(5): 886–895Google Scholar
  9. 9.
    Rothen HUB, Sporre G, Engberg G et al (1995) Prevention of atelectasis during general anaesthesia. Lancet 345: 1387–1391PubMedCrossRefGoogle Scholar
  10. 10.
    West JB, Dollery CT, Naimark A (1964) Distribution of blood flow in isolated lung: relation to vascular and alveolar pressures. J Appl Physiol, 19:713–724PubMedGoogle Scholar
  11. 11.
    Glenny RW, Lamm WJ, Albeit RK, Robertson HT (1991) Gravity is a minor determinant of pulmonary blood flow distribution. J Appl Physiol, 71:620–629PubMedGoogle Scholar
  12. 12.
    Schuster DP, Haller J (1990) Regional pulmonary blood flow during acute pulmonary edema: a PET study. J Appl Physiol; 69: 353–361PubMedGoogle Scholar
  13. 13.
    Mélot C (1994) Ventilation-perfusion relationships in acute respiratory failure. Thorax; 49: 1251–1258PubMedCrossRefGoogle Scholar
  14. 16.
    Gattinoni L, Bombino M, Pelosi P et al (1994) Lung structure and function in different stages of severe adult respiratory distress syndrome. JAMA; 271: 1772–1779PubMedCrossRefGoogle Scholar
  15. 17.
    Muscedere JG, Mullen JB, Gan K, Slutsky AS (1994) Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med; 149: 1327–1334PubMedGoogle Scholar
  16. 18.
    Neumann P, Berglund JE, Mondejar EF et al (1998) Effect of different pressure levels on the dynamics of lung collapse and recruitment in oleic acid-induced lung injury. Am J Resp Crit Care Med; 158: 1636–1643PubMedGoogle Scholar
  17. 19.
    Tharratt RS, Allen RF, Albertson TE (1988) Pressure controlled inverse ventilation in severe adult respiratory failure. Chest; 94: 755–762PubMedCrossRefGoogle Scholar
  18. 20.
    Lessard MR, Guerot E, Lorino H et al (1994) Effects of pressure controlled ventilation with different I:E ratios versus volume controlled ventilation on respiratory mechanics, gas exchange and hemodynamics in patients with adult respiratory distress syndrome. Anesthesiology; 80:983–991PubMedCrossRefGoogle Scholar
  19. 21.
    Neumann P, Berglund J, Andersson LG et al (2000) Effects of inverse ratio ventilation and positive end-expiratory pressure in oleic acid-induced lung injury. Am J Respir Crit Care Med; 161: 1537–1545PubMedGoogle Scholar
  20. 22.
    Douglas WW, Rehder K, Beynen FM et al (1977) Improved oxygenation in patients with acute respiratory failure. The prone position. Am Rev Respir Dis; 115: 559–566PubMedGoogle Scholar
  21. 23.
    Mure M, Martlin Cr, Lindahl S (1997) Dramatic effect on oxygenation in patients with severe acute lung insufficiency treated in the prone position. Crit Care Med; 25: 1539–1544PubMedCrossRefGoogle Scholar
  22. 24.
    Gattinoni L (2001) Prone positioning in ALI: clinical application. Simposia Mostra Anestesia Ranimazione e Terapia Intensiva (SMART); Milano.Google Scholar
  23. 25.
    Wiener-Kronish P, Gropper MA, Lai-Fook SJ (1985) Pleural liquid pressure in dogs measured using a rib capsule. J Appl Physiol; 59: 597–602PubMedGoogle Scholar
  24. 26.
    Brazzi L, Ravagnan I, Pelosi P, Gattinoni L (1999) Prone position in anaesthesia and intensive care. Care Crit Ill; 15: 5–10Google Scholar
  25. 27.
    Nyrén S, Mure M, Jacobsson H, Larsson SA, Lindahl SGE (1999) Pulmonary perfusion is more uniform in prone than supine position: Scintigraphy in healthy humans. J Appl Physiol; 86: 1135–1141PubMedGoogle Scholar
  26. 28.
    Mure M, Domino KB, Lindahl SGE et al (2000) Regional ventilation-perfusion distribution is more uniform in the prone position. J Appl Physiol; 88: 1076–1083PubMedGoogle Scholar
  27. 29.
    Putensen C, Räsänen J, Lopez FA (1994) Ventilation-perfusion distributions during mechanical ventilation with superimposed spontaneous breathing in canine lung injury. Am J Resp Crit Care Med; 150: 101–108PubMedGoogle Scholar
  28. 30.
    Putensen C, Mutz NJ, Putensen-Himmer G, Zinserling J (1999) Spontaneous breathing during ventilatory support improves ventilation-perfusion distributions in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 159:1241–1248PubMedGoogle Scholar
  29. 31.
    Neumann P, Hedenstierna G (2001) Ventilatory support by continuous positive airway pressure breathing improves gas exchange as compared with partial ventilatory support with airway pressure release ventilation. Anesth Analg; 92: 950–958PubMedCrossRefGoogle Scholar
  30. 32.
    Rossaint R, Falke KJ, Lopez F et al (1993) Inhaled nitric oxide for the adult respiratory distress syndrome. N Engl J Med; 328:399–405PubMedCrossRefGoogle Scholar
  31. 33.
    Manktelow C, Bigatello LM, Hess D et al (1997) Physiologic determinants of the response to inhaled nitric oxide in patients with acute respiratory distress syndrome. Anesthesiology; 87:297–307PubMedCrossRefGoogle Scholar
  32. 34.
    Chen L, He H, Mondejar EF et al (2001) Endothelin-1 and nitric oxide synthase in short rebound reaction to short exposure to inhaled nitric oxide. Am J Physiol.; 281: H124-131Google Scholar
  33. 35.
    Hambraeus Jonzon K, Chen L, Freden F et al (2001) Pulmonary vasoconstriction during regional NO inhalation. Evidence of a blood-borne regulator of NO synthase activity. Anesthesiology.Google Scholar
  34. 36.
    Walmrath D, Schermuly R, Pilch J et al (1997) Effects of inhaled versus intravenous vasodilators in experimental pulmonary hypertension. Eur Respir J; 10:1084–1092PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2002

Authors and Affiliations

  • G. Hedenstierna
    • 1
  1. 1.Department of Clinical PhysiologyUniversity HospitalUppsalaSweden

Personalised recommendations